• Title/Summary/Keyword: Structural Weight

Search Result 2,484, Processing Time 0.03 seconds

Prediction of compressive strength of concrete using multiple regression model

  • Chore, H.S.;Shelke, N.L.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.837-851
    • /
    • 2013
  • In construction industry, strength is a primary criterion in selecting a concrete for a particular application. The concrete used for construction gains strength over a long period of time after pouring the concrete. The characteristic strength of concrete is defined as the compressive strength of a sample that has been aged for 28 days. Neither waiting for 28 days for such a test would serve the rapidity of construction, nor would neglecting it serve the quality control process on concrete in large construction sites. Therefore, rapid and reliable prediction of the strength of concrete would be of great significance. On this backdrop, the method is proposed to establish a predictive relationship between properties and proportions of ingredients of concrete, compaction factor, weight of concrete cubes and strength of concrete whereby the strength of concrete can be predicted at early age. Multiple regression analysis was carried out for predicting the compressive strength of concrete containing Portland Pozolana cement using statistical analysis for the concrete data obtained from the experimental work done in this study. The multiple linear regression models yielded fairly good correlation coefficient for the prediction of compressive strength for 7, 28 and 40 days curing. The results indicate that the proposed regression models are effectively capable of evaluating the compressive strength of the concrete containing Portaland Pozolana Cement. The derived formulas are very simple, straightforward and provide an effective analysis tool accessible to practicing engineers.

Design of tensegrity structures using artificial neural networks

  • Panigrahi, Ramakanta;Gupta, Ashok;Bhalla, Suresh
    • Structural Engineering and Mechanics
    • /
    • v.29 no.2
    • /
    • pp.223-235
    • /
    • 2008
  • This paper focuses on the application of artificial neural networks (ANN) for optimal design of tensegrity grid as light-weight roof structures. A tensegrity grid, 2 m ${\times}$ 2 m in size, is fabricated by integrating four single tensegrity modules based on half-cuboctahedron configuration, using galvanised iron (GI) pipes as struts and high tensile stranded cables as tensile elements. The structure is subjected to destructive load test during which continuous monitoring of the prestress levels, key deflections and strains in the struts and the cables is carried out. The monitored structure is analyzed using finite element method (FEM) and the numerical model verified and updated with the experimental observations. The paper then explores the possibility of applying ANN based on multilayered feed forward back propagation algorithm for designing the tensegrity grid structure. The network is trained using the data generated from a finite element model of the structure validated through the physical test. After training, the network output is compared with the target and reasonable agreement is found between the two. The results demonstrate the feasibility of applying the ANNs for design of the tensegrity structures.

Non-Contact Pick-up System for Turning Large Flexible Thin Sheets (대형 유연박판 회전이송용 비접촉 파지시스템 설계)

  • Kim, Joon Hyun;Ahn, Sung Wook;Lee, Se Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.435-442
    • /
    • 2014
  • This paper describes an improved design model that can be used to configure a non-contact pneumatic device to turn a large sheet at the in-line system. For rotational moving in the conveyor system, the conventional method is to turn the system itself. The improved non-contact pick-up system mainly uses 8 pairs of L-shaped latches and 12 swirl type heads. It is positioned above the upward air flow table. This system performs the non-contact gripping and side-edge contact support in the vertical and rotational directions to hold the self-weight of a large flat sheet. A non-contact air head can exert a sufficient gripping ability at 4N lower than the standard working pressure. The side latches support 60% of the lifting force required. Through structural and flow analysis, the working conditions were simultaneously considered in accordance with the deflection and flatness of the glass.

Structural Relationship among Technical Human Resources, Technology Innovation Activity and Achievements of Technical Innovation: Centered around Manufacturing Corporations (기술인적자원관리, 기술혁신활동 및 기술혁신성과의 구조적 관계: 제조기업을 중심으로)

  • Na, Sang-Gyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.3
    • /
    • pp.283-294
    • /
    • 2010
  • The present paper deals with an analysis of relationship among technical human resources management as a precursor, technology innovation activity and achievements of technical innovation on the basis of preceding empirical studies on technology innovation activities of manufacturing corporations. The analysis shows that First, the technical human resources management is found to have influence upon technology innovation activity in various ways, implying that the role of technical human resources management as a key to technical innovation is most important of all to enable manufacturing companies to gain edge in competition by means of technology innovation activity; and Second, technology innovation activity exercises impacts on the achievements of exploitative technology innovation as well as on the achievements of exploratory technology innovation on the part of manufacturing industry. The above findings prove that the level of technology innovation activity may be a source for superior competitiveness of manufacturing business as a result of technology innovation performance. Manufacturing corporations, thus, need to place more weight on stepping up their executive level of technology innovation activity factors than on increasing simply the level of technical investment.

Composite Skid Landing Gear Optimal Design for Light VTOL UAV (경량 수직이착륙 무인기의 복합재료 스키드 착륙장치 최적설계)

  • Lee, Jungjin;Kim, Myungjun;Kim, Yongha;Shin, Jungchan;Hwang, Kyungmin
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.55-61
    • /
    • 2015
  • In this study, we peformed optimal design of a composite skid landing gear, one of the solid spring shock absorbers, for light vertical takeoff and landing aircraft. Although a solid spring type has poor energy dissipation capability, it is commonly used for light aircraft where sink speeds are low and shock absorption is non-critical in terms of simplicity, low cost and weight reduction. In this paper, design parameters of solid spring such as sink speed, gear leg length, deflection and landing load factor were reviewed. In order to meet structural requirements such as deflection and strength, finally, we conducted optimal design of the composite skid landing gear for VTOL UAV using genetic algorithm and pattern search algorithm.

Investigation of jack-up leg extension for deep water operations

  • Welaya, Yousri M.A.;Elhewy, Ahmed;Hegazy, Mohamed
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.288-300
    • /
    • 2015
  • Since the first jack-up was built, jackups have become the most popular type of mobile offshore drilling unit (MODU) for offshore exploration and development purposes in shallow water. The most pivotal component of the jack-up unit is the leg, which can directly affect the global performance of the unit. In this paper, an investigation into extending the length of the jack up leg is carried out in order to study the enhancement of the rig capability to drill in deeper water approaching the range of the Semisubmersible Drilling Unit (SSDU) (300-1000ft). A study of the performance of a deep-water jack-up unit is performed with different leg lengths. Typical leg scantling dimensions and identical external loads are assigned, and then a detailed Finite Element Analysis (FEA) model is created in order to simulate the jack-up leg unit's structural behavior. A Multi-point Constraint (MPC) element together with the spring element is used to deal with the boundary conditions. Finally, a comparative analysis for five leg lengths is carried out to illustrate their performance, including the ultimate static strength, and weight.

Electrical Conductivity, Dielectric Behavior and EMI Shielding Effectiveness of Polyaniline-Yttrium Oxide Composites

  • Faisal, Muhammad;Khasim, Syed
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.99-106
    • /
    • 2013
  • Polyaniline-yttrium trioxide (PAni-$Y_2O_3$) composites were synthesized by the in-situ polymerization of aniline in the presence of $Y_2O_3$ The composite formation and structural changes in these composites were investigated by X-ray diffraction (XRD), Fourier transform infra red spectroscopy (FTIR), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The direct current (DC) electrical conductivity of the order of $0.51{\times}10^{-2}\;S\;cm^{-1}-0.283\;S\;cm^{-1}$ in the temperature range 300 K-473 K indicates semiconducting behavior of the composites. Room temperature AC conductivity and dielectric response of the composites were studied in the frequency range of 10 Hz to 1 MHz. The variation of AC conductivity with frequency obeyed the power law, which decreased with increasing weight percentage (wt %) of $Y_2O_3$. Studies on dielectric properties shows the relaxation contribution coupled by electrode polarization effect. The dielectric constant and dielectric loss in these composites depend on the content of $Y_2O_3$ with a percolation threshold at 20 wt % of $Y_2O_3$ in PAni. Electromagnetic interference shielding effectiveness (EMI SE) of the composites in the frequency range 100 Hz to 2 GHz was in the practically useful range of -12.2 dB to -17.2 dB. The observed electrical and shielding properties were attributed to the interaction of $Y_2O_3$ particles with the PAni molecular chains.

Experimental and numerical investigation of expanded metal tube absorber under axial impact loading

  • Nouri, M. Damghani;Hatami, H.;Jahromi, A. Ghodsbin
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1245-1266
    • /
    • 2015
  • In this research, the cylindrical absorber made of expanded metal sheets under impact loading has been examined. Expanded metal sheets due to their low weight, effective collapse mechanism has a high energy absorption capacity. Two types of absorbers with different cells angle were examined. First, the absorber with cell angle ${\alpha}=0$ and then the absorber with angle cell ${\alpha}=90$. Experimental Study is done by drop Hammer device and numerical investigation is done by finite element of ABAQUS software. The output of device is acceleration-time Diagram which is shown by Accelerometer that is located on the picky mass. Also the output of ABAQUS software is shown by force-displacement diagram. In this research, the numerical and experimental study of the collapse type, force-displacement diagrams and effective parameters has been investigated. Similarly, the comparison between numerical and experimental results has been observed that these results are matched well with each other. From the obtained results it was observed that the absorber with cell angle ${\alpha}=0$, have symmetric collapse and had high energy absorption capacity but the absorber with cell angle ${\alpha}=90$, had global buckling and the energy absorption value was not suitable.

Influence of high-cycle fatigue on the tension stiffening behavior of flexural reinforced lightweight aggregate concrete beams

  • Chen, How-Ji;Liu, Te-Hung;Tang, Chao-Wei;Tsai, Wen-Po
    • Structural Engineering and Mechanics
    • /
    • v.40 no.6
    • /
    • pp.847-866
    • /
    • 2011
  • The objective of this study was to experimentally investigate the bond-related tension stiffening behavior of flexural reinforced concrete (RC) beams made with lightweight aggregate concrete (LWAC) under various high-cycle fatigue loading conditions. Based on strain measurements of tensile steel in the RC beams, fatigue-induced degradation of tension stiffening effects was evaluated and was, compared to reinforced normal weight concrete (NWC) beams with equal concrete compressive strengths (40 MPa). According to applied load-mean steel strain relationships, the mean steel strain that developed under loading cycles was divided into elastic and plastic strain components. The experimental results showed that, in the high-cycle fatigue regime, the tension stiffening behavior of LWAC beams was different from that of NWC beams; LWAC beams had a lesser reduction in tension stiffening due to a better bond between steel and concrete. This was reflected in the stability of the elastic mean steel strains and in the higher degree of local plasticity that developed at the primary flexural cracks.

Stability Studies of Biodegradable Polymersomes Prepared by Emulsion Solvent Evaporation Method

  • Lee Yu-Han;Chang Jae-Byum;Kim Hong-Kee;Park Tae-Gwan
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.359-364
    • /
    • 2006
  • Di-block copolymers composed of two biocompatible polymers, poly(ethylene glycol) and poly(D,L-lactide), were synthesized by ring-opening polymerization for preparing polymer vesicles (polymersomes). Emulsion solvent evaporation method was used to fabricate the polymersomes. Scanning electron microscope (SEM) images confirmed that polymersomes have a hollow structure inside. Confocal laser microscope and optical microscope were also used to verify the hollow structure of polymersomes. Polymersomes having various sizes from several hundred nanometers to a few micrometers were fabricated. The size of the polymersomes could be readily controlled by altering the relative hydrodynamic volume fraction ratio between hydrophilic and hydrophobic blocks in the copolymer structure, and by varying the fabrication methods. They showed greatly enhanced stability with increased molecular weight of PEG. They maintained their physical and chemical structural integrities after repeated cycles of centrifugation/re-dispersion, and even after treatment with surfactants.