• Title/Summary/Keyword: Structural Stability and Dynamics

Search Result 105, Processing Time 0.022 seconds

Computational analysis of molecular dynamics results in a fuzzy stability system

  • C.C. Hung;T. Nguyen;C.Y. Hsieh
    • Advances in Computational Design
    • /
    • v.9 no.1
    • /
    • pp.53-71
    • /
    • 2024
  • Owing to these mechanical properties, carbon nanotubes have the potential to be employed in many future devices and nanostructured materials. As an example, high Young modulus accompanied by their low density, makes them a good choice for reinforcing material in composites. Therefore, we empathize and manually derive the results which shows the utilized lemma and criterion are believed effective and efficient for aircraft structural analysis of composite and nonlinear scenarios. To be fair, the experiment by numerical computation and calculations were explained the perfectness of the methodology we provided in the research.

Development of Small Manipulator Platform for Composite Structure Repair (복합재 구조물 유지보수를 위한 소형 매니퓰레이터 플랫폼 개발)

  • Geun-Su Song;Hyo-Hun An;Kwang-Bok Shin
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.108-116
    • /
    • 2023
  • In this paper, kinematic design and multi-body dynamics analysis were conducted to develop a small manipulator platform for automating the maintenance of structures made of composite materials. To design manipulator kinematically, the existing composite repair process was considered. The 3D design was conducted after selecting the basic specifications of manipulator and end-effecter in consideration of the patch lamination process for repair. Then, variables necessary for simulation and control were generated in MATLAB through inverse kinematic analysis. To evaluate the structural stability of platform, multibody dynamics analysis was conducted using Altair Inspire and Optistruct. Based on the simulation conducted in Inspire, multibody dynamics analysis was conducted in Optistruct, and structural stability was verified through the results of maximum displacement and Von-Mises stress over time. To verify the design, manufacturing and controlling of platform were conducted and compared with the simulation. It was confirmed that the actual repair process path and the simulation showed a good agreement.

Dynamics of a rotating beam with flexible root and flexible hub

  • Al-Qaisia, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.4
    • /
    • pp.427-444
    • /
    • 2008
  • A mathematical model for the nonlinear dynamics of a rotating beam with flexible root attached to a rotating hub with elastic foundation is developed. The model is developed based on the large planar and flexural deformation theory and the potential energy method to account for axial shortening due to bending deformation. In addition the exact nonlinear curvature is used in the system potential energy. The Lagrangian dynamics and the assumed mode method is used to derive the nonlinear coupled equations of motion hub rotation, beam tip deflection and hub horizontal and vertical displacements. The derived nonlinear model is simulated numerically and the results are presented and discussed for the effect of root flexibility, hub stiffness, torque type, torque period and excitation frequency and amplitude on the dynamic behavior of the rotating beam-hub and on its stability.

New phenomena associated with the nonlinear dynamics and stability of autonomous damped systems under various types of loading

  • Sophianopoulos, Dimitris S.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.4
    • /
    • pp.397-416
    • /
    • 2000
  • The present study deals with the nonlinear dynamics and stability of autonomous dissipative either imperfect potential (limit point) systems or perfect (bifurcational) non-potential ones. Through a fully nonlinear dynamic analysis, performed on two simple 2-DOF models corresponding to the classes of systems mentioned above, and with the aid of basic definitions of the theory of nonlinear dynamical systems, new important phenomena are revealed. For the first class of systems a third possibility of postbuckling dynamic response is offered, associated with a point attractor on the prebuckling primary path, while for the second one the new findings are chaos-like (most likely chaotic) motions, consecutive regions of point and periodic attractors, series of global bifurcations and point attractor response of always existing complementary equilibrium configurations, regardless of the value of the nonconservativeness parameter.

Dynamics of an Axially Moving Timoshenko Beam (축 방향으로 이동하는 티모센코보의 동특성 해석)

  • Kim, Joo-Hong;Oh, Hyung-Mi;Lee, U-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1066-1071
    • /
    • 2002
  • The use of frequency-dependent spectral element matrix (or exact dynamic stiffness matrix) in structural dynamics is known to provide very accurate solutions, while reducing the number of degrees-of-freedom to resolve the computational and cost problems. Thus, in the present paper, the spectral element model is formulated for the axially moving Timoshenko beam under a uniform axial tension. The high accuracy of the present spectral element is then verified by comparing its solutions with the conventional finite element solutions and exact analytical solutions. The effects of the moving speed and axial tension on the vibration characteristics, the dispersion relation, and the stability of a moving Timoshenko beam are investigated, analytically and numerically.

  • PDF

Verification of bridges Design criteria for Continuous PSC Box Bridge of High Speed Railway Using Field Test (고속철도 연속 PSC Box 교량에 적용한 설계기준의 현장계측에 의한 검증)

  • Kang, Kee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.53-58
    • /
    • 2006
  • The aim of this paper is to verify the dynamics stability of the continuous PSC Box bridges on the high-speed Kyoung-bu railway when a high-sped train runs through it. An experimental study was carried out to investigate the dynamic behaviors of the PSC Box railway bridge, which had ben designed based on dynamic design criteria. As a result, it was determined that PSC Box railway bridges possess enough dynamics stability for use by high-speed trains. According to the result of a field test (dynamics measuring analysis) that was conducted, an application of the natural frequency of train speed and the adjustment of the bridge's span length will allow one to come up with a more economical and suitable bridge design. Furthermore, it was found that the continuous control of the bridge's dynamic behavior and the bridge's maintena nce require the recording of data. The results of this study are very important in evaluating the structural stability of high-speed line bridges.

Prediction of Aerodynamic Coefficients of Bridges Using Computational Fluid Dynamics (전산유체역학 해석에 의한 교량 단면의 공력 특성값 추정)

  • Hong, Young-Kil
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.57-62
    • /
    • 2013
  • Aerodynamic characteristics of cross section shape is an important parameter for the wind response and structural stability of long span bridges. Numerical simulation methods have been introduced to estimate the aerodynamic characteristics for more detailed flow analysis and cost saving in place of existing wind tunnel experiment. In this study, the computational fluid dynamics(CFD) simulation and large eddy simulation( LES) technique were used to estimate lift, drag and moment coefficients of four cross sections. The Strouhal numbers were also determined by the fast Fourier transform of time series of the lift coefficient. The values from simulations and references were in a good agreement with average difference of 16.7% in coefficients and 8.5% in the Strouhal numbers. The success of the simulations is expected to attribute to the practical use of numerical estimation in construction engineering and wind load analysis.

Computational fluid analysis of Aircraft Exhaust Duct for Verification of Structural Stability (항공기용 배기덕트의 구조적 안정성 검토를 위한 전산유동해석)

  • Lee, Changwook;Kim, Woncheol;Park, YongSuk;Yang, Yongjun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.606-608
    • /
    • 2017
  • The computational fluid analysis was carried out to investigate structural stability of exhaust duct for turboprop engine. In order to calculate the thrust and shear force acting on the flight condition of the aircraft, the flow in the exhaust duct and the flow in the direction of the exhaust duct flange were analyzed by Fluent software to obtain thrust, shear force and bending moment. As a result of the analysis, it was confirmed that the allowable loads set idle engine manual were not exceeded.

  • PDF

Heat resistance of carbon nanoonions by molecular dynamics simulation

  • Wang, Xianqiao;Lee, James D.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.247-255
    • /
    • 2011
  • Understanding the structural stability of carbon nanostructure under heat treatment is critical for tailoring the thermal properties of carbon-based material at small length scales. We investigate the heat resistance of the single carbon nanoball ($C_{60}$) and carbon nanoonions ($C_{20}@C_{80}$, $C_{20}@C_{80}@C_{180}$, $C_{20}@C_{80}@C_{180}C_{320}$) by performing molecular dynamics simulations. An empirical many-body potential function, Tersoff potential, for carbon is employed to calculate the interaction force among carbon atoms. Simulation results shows that carbon nanoonions are less resistive against heat treatment than single carbon nanoballs. Single carbon nanoballs such $C_{60}$ can resist heat treatment up to 5600 K, however, carbon nanoonions break down after 5100 K. This intriguing result offers insights into understanding the thermal-mechanical coupling phenomena of nanodevices and the complex process of fullerenes' formation.

Evaluating Stability of a Transient Cut during Endmilling using the Dynamic Cutting Force Model

  • Seokjae Kang;Cho, Dong-Woo;Chong K. Chun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.67-75
    • /
    • 2000
  • virtual computer numerical control(VCNC) arises from the concept that one can experience pseudo-real machining with a computer-numerically-controlled(CNC) machine before actually cutting an object. To achieve accurate VCNC, it is important to determine abnormal behavior, such as chatter, before cutting. Detecting chatter requires an understanding of the dynamic cutting force model. In general, the cutting process is a closed loop system the consists of structural and cutting dynamic. Machining instability, namely chatter, results from the interaction between these two dynamics. Several previous reports have predicted stability for a single path, using a simple cutting force model without run out and penetration effects. This study considers both tool run out and penetration effects, using experimental modal analysis, to obtain predictions that are more accurate. The machining stability during a corner cut, which is a typical transient cut, was assessed from an evaluation of the cutting configurations at the corner.

  • PDF