• Title/Summary/Keyword: Structural Stability Analysis

Search Result 1,419, Processing Time 0.03 seconds

Behaviors of the High-profile Arch Soil-steel Structure During Construction (높은 아치형 지중강판 구조물의 시공 중 거동 분석)

  • 이종구;조성민;김경석;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.71-84
    • /
    • 2003
  • The metallic shell of soil-steel structures are so weak in bending moment that it should sustain the applied load by the interaction of the backfill soil around the structures. The shell can be subjected to excessive bending moment during side backfilling or under live-load when the soil cover is less than the minimum value. The current design code specifies the allowable deformation and Duncan(1979) and McGrath et al.(2001) suggested the strength analysis methods to limit the moments by the plastic capacity of the shell. However, the allowable deformation is an empirically determined value and the strength analysis methods are based on the results of FE analysis, hence the experimental verification is necessary. In this study, the full-scale tests were conducted on the high-profile arch to investigate its behaviors during backfilling and under static live-loads. Based on the measurements, the allowable deformation of the tested structure could be estimated to be 1.45% of rise, which is smaller than the specified allowable deformation. The comparison between the measurements and the results of two strength analyses indicate that Duncan underestimates the earth-load moment and overestimates the live-load moment, while McGrath et al. predicts both values close to the actual values. However, as the predicted factors of safeties using two methods coincide with the actual factor of safety, it can be concluded that both methods can predict the structural stability under live-loads adequately when the cover is less than the minimum.

Stress Variation Characteristics of Temporary Fixed Steel Rod in FCM Bridge Construction Method (FCM 교량 가설 공법에서 임시 고정 강봉의 응력 변화 특성 )

  • Hyun-Euk Kang;Wan-Shin Park;Young-Il Jang;Sun-Woo Kim;Hyun-Do Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.21-29
    • /
    • 2023
  • In this study, the stress characteristics of temporary fixed steel rods were analyzed in the "temporary fixing system using internal prestressing tension", which is mainly applied to the construction of superstructures by FCM. It was difficult to confirm the changes in initial tensile force in this system because the steel rod was internally connected to the pier and the PSC BOX. Therefore, measurement was performed before and after the completion of each segment using an FBG sensor to measure the change in the micro length of the steel rod. The results of the analysis showed that 75% to 90% of the maximum vertical contraction of the steel rod that occurred until the completion of the cantilever segment occurred in the fixing ~ 1segment, and the maximum loss of initial prestressing force was 39%. Such excessive loss of tension force to 1 segment means that tension is needed to improve the precision of construction during the fixation, and re-tension is needed to secure stability for conduction of cantilever segments after the completion of 1segment. In the 2 ~ last segment, the stress of the steel rod decreased gradually, and in the summer, the decrease in stress tended to partially recover due to the increase in the length of the steel rod corresponding to the increase in the vertical volume of PSC BOX. The dominant factor in the stress change in 2~ last segment in this phenomenon is judged to be the change in the length of the steel rod according to the temperature. Unlike the change in length, the relaxation was 1.2-2.7%, which was mostly offset by the opposite stress corresponding to the temperature stress. Therefore, a plan was proposed to improve the internal stress, such as adjusting the fixation time.

Numerical Simulation of Dynamic Response of Seabed and Structure due to the Interaction among Seabed, Composite Breakwater and Irregular Waves (II) (불규칙파-해저지반-혼성방파제의 상호작용에 의한 지반과 구조물의 동적응답에 관한 수치시뮬레이션 (II))

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.174-183
    • /
    • 2014
  • Seabed beneath and near coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank to account for an irregular wave field. In the condition of an irregular wave field, the dynamic wave pressure and water flow velocity acting on the seabed and the surface boundary of the composite breakwater structure were estimated. Simulation results were used as input data in a finite element computer program for elastoplastic seabed response. Simulations evaluated the time and spatial variations in excess pore water pressure, effective stress, and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the results of the analysis, the liquefaction potential at the seabed in front and rear of the composite breakwater was identified. Since the liquefied seabed particles have no resistance to force, scour potential could increase on the seabed. In addition, the strength decrease of the seabed due to the liquefaction can increase the structural motion and significantly influence the stability of the composite breakwater. Due to limitations of allowable paper length, the studied results were divided into two portions; (I) focusing on the dynamic response of structure, acceleration, deformation of seabed, and (II) focusing on the time variation in excess pore water pressure, liquefaction, effective stress path in the seabed. This paper corresponds to (II).

Numerical Simulation of Dynamic Response of Seabed and Structure due to the Interaction among Seabed, Composite Breakwater and Irregular Waves (I) (불규칙파-해저지반-혼성방파제의 상호작용에 의한 지반과 구조물의 동적응답에 관한 수치시뮬레이션 (I))

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.160-173
    • /
    • 2014
  • Seabed beneath and near coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank to account for an irregular wave field. In the condition of an irregular wave field, the dynamic wave pressure and water flow velocity acting on the seabed and the surface boundary of the composite breakwater structure were estimated. Simulation results were used as input data in a finite element computer program for elastoplastic seabed response. Simulations evaluated the time and spatial variations in excess pore water pressure, effective stress, and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the results of the analysis, the liquefaction potential at the seabed in front and rear of the composite breakwater was identified. Since the liquefied seabed particles have no resistance to force, scour potential could increase on the seabed. In addition, the strength decrease of the seabed due to the liquefaction can increase the structural motion and significantly influence the stability of the composite breakwater. Due to limitations of allowable paper length, the studied results were divided into two portions; (I) focusing on the dynamic response of structure, acceleration, deformation of seabed, and (II) focusing on the time variation in excess pore water pressure, liquefaction, effective stress path in the seabed. This paper corresponds to (I).

An Analysis of Termite(R. speratus kyushuensis) Damage to Nationally Designated Wooden Architectural Heritage in Korea (국가지정 목조건축문화재의 흰개미(R. speratus kyushuensis) 피해 현황 분석)

  • KIM, Sihyun;CHUNG, Yongjae
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.2
    • /
    • pp.102-111
    • /
    • 2022
  • Termites are a group of social insects that are one of the primary causes of damage to wooden architectural heritage. Since termite damage impairs the authenticity and structural stability of cultural heritage, it is imperative to prevent it. This study examines the extent of termite damage to wooden architectural heritage as part of efforts to prevent termite damage to nationally designated wooden architectural heritage sites across the country. The extent of termite damage to each cultural heritage was assessed qualitatively and quantitatively and comparatively analyzed by region using the results of the "Investigation on Biological Damage to Wooden Architectural Heritages" conducted by the National Research Institute of Cultural Heritage from 2016 to 2019. It involved 362 nationally designated wooden architectural heritages(25 national treasures, 157 treasures, 180 national folklore cultural heritages) and 1,104 buildings. The results were as follows: termite detection dogs reacted at 317(87.6%) of the 362 wooden heritages, with visible termite damage observed in 185 cases(51.1%). Furthermore, termite damage was confirmed using one of two methods(detection dogs or visual inspection) in 324 cases(89.5%). Of the 1,104 buildings, termite detection dogs reacted at 668(60.5%), while 339(30.7%) showed visible termite damage. Employing one of the two methods, damage was confirmed in 702 buildings(63.6%). The country was categorized into nine regions(Seoul Metropolitan Area, Gangwon, Chungbuk, Chungnam, Jeonbuk, Jeonnam, Gyeongbuk, Gyeongnam, and Jeju) to examine the termite damage rate and the degree of damage to each cultural heritage according to location. Termite detection dogs reacted to more than 70% of the cultural heritage in all regions. Visible damage was minimal in the Seoul metropolitan area(32.1%) and Gangwon(21.4%) but severe in Chungnam(65.6%), Jeonnam(67.3%), and Gyeongnam(68.2%). By quantifying the degree of termite damage of each cultural heritage as a ratio of the absence of termite damage among the total absence, the average termite damage of the cultural heritage across the country was 9.2%. Regional variance analysis showed that the cultural heritage in Jeonbuk and Jeonnam showed a statistically significantly higher degree of termite damage than the cultural heritage in the Seoul metropolitan area, Chungbuk, and Gyeongbuk. This paper comprehensively analyzed termite damage to nationally designated wooden architectural heritage. The findings are expected to be valuable in establishing policies for the preservation and management of cultural heritage sites in the future.

Highly Doped Nano-crystal Embedded Polymorphous Silicon Thin Film Deposited by Using Neutral Beam Assisted CVD at Room Temperature

  • Jang, Jin-Nyeong;Lee, Dong-Hyeok;So, Hyeon-Uk;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.154-155
    • /
    • 2012
  • The promise of nano-crystalites (nc) as a technological material, for applications including display backplane, and solar cells, may ultimately depend on tailoring their behavior through doping and crystallinity. Impurities can strongly modify electronic and optical properties of bulk and nc semiconductors. Highly doped dopant also effect structural properties (both grain size, crystal fraction) of nc-Si thin film. As discussed in several literatures, P atoms or radicals have the tendency to reside on the surface of nc. The P-radical segregation on the nano-grain surfaces that called self-purification may reduce the possibility of new nucleation because of the five-coordination of P. In addition, the P doping levels of ${\sim}2{\times}10^{21}\;at/cm^3$ is the solubility limitation of P in Si; the solubility of nc thin film should be smaller. Therefore, the non-activated P tends to segregate on the grain boundaries and the surface of nc. These mechanisms could prevent new nucleation on the existing grain surface. Therefore, most researches shown that highly doped nc-thin film by using conventional PECVD deposition system tended to have low crystallinity, where the formation energy of nucleation should be higher than the nc surface in the intrinsic materials. If the deposition technology that can make highly doped and simultaneously highly crystallized nc at low temperature, it can lead processes of next generation flexible devices. Recently, we are developing a novel CVD technology with a neutral particle beam (NPB) source, named as neutral beam assisted CVD (NBaCVD), which controls the energy of incident neutral particles in the range of 1~300eV in order to enhance the atomic activation and crystalline of thin films at low temperatures. During the formation of the nc-/pm-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. In the case of phosphorous doped Si thin films, the doping efficiency also increased as increasing the reflector bias (i.e. increasing NPB energy). At 330V of reflector bias, activation energy of the doped nc-Si thin film reduced as low as 0.001 eV. This means dopants are fully occupied as substitutional site, even though the Si thin film has nano-sized grain structure. And activated dopant concentration is recorded as high as up to 1020 #/$cm^3$ at very low process temperature (< $80^{\circ}C$) process without any post annealing. Theoretical solubility for the higher dopant concentration in Si thin film for order of 1020 #/$cm^3$ can be done only high temperature process or post annealing over $650^{\circ}C$. In general, as decreasing the grain size, the dopant binding energy increases as ratio of 1 of diameter of grain and the dopant hardly be activated. The highly doped nc-Si thin film by low-temperature NBaCVD process had smaller average grain size under 10 nm (measured by GIWAXS, GISAXS and TEM analysis), but achieved very higher activation of phosphorous dopant; NB energy sufficiently transports its energy to doping and crystallization even though without supplying additional thermal energy. TEM image shows that incubation layer does not formed between nc-Si film and SiO2 under later and highly crystallized nc-Si film is constructed with uniformly distributed nano-grains in polymorphous tissues. The nucleation should be start at the first layer on the SiO2 later, but it hardly growth to be cone-shaped micro-size grains. The nc-grain evenly embedded pm-Si thin film can be formatted by competition of the nucleation and the crystal growing, which depend on the NPB energies. In the evaluation of the light soaking degradation of photoconductivity, while conventional intrinsic and n-type doped a-Si thin films appeared typical degradation of photoconductivity, all of the nc-Si thin films processed by the NBaCVD show only a few % of degradation of it. From FTIR and RAMAN spectra, the energetic hydrogen NB atoms passivate nano-grain boundaries during the NBaCVD process because of the high diffusivity and chemical potential of hydrogen atoms.

  • PDF

International Success the Second Time Around: A Case Study (제이륜국제성공(第二轮国际成功): 일개안례연구(一个案例研究))

  • Colley, Mary Catherine;Gatlin, Brandie
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.2
    • /
    • pp.173-178
    • /
    • 2010
  • A privately held, third generation family owned company, Boom Technologies, Inc. (BTI), a provider of products and services to the electric utility, telecommunications and contractor markets, continues to make progress in exporting. Although export sales only equaled 5% of total revenue in 2008, BTI has an entire export division. Their export division's Managing Director reveals the trial and errors of a privately held company and their quest for success overseas. From its inception, BTI has always believed its greatest asset is its employees. When export sales struggled due to lack of strategy and direction, BTI hired a Managing Director for its export division. With leadership and guidance from BTI's president and from the Managing Director, they utilized the department's skills and knowledge. Structural changes were made to expand their market presence abroad and increase export sales. As a result, export sales increased four-fold, area managers in new countries were added and distribution networks were successfully cultivated. At times, revenue generation was difficult to determine due to the structure of the company. Therefore, in 1996, the export division was restructured as a limited liability company. This allowed the company to improve the tracking of revenue and expenses. Originally, 80% of BTI's export sales came from two countries; therefore, the initial approach to selling overseas was not reaching their anticipated goals of expanding their foreign market presence. However, changes were made and now the company manages the details of selling to over 80 countries. There were three major export expansion challenges noted by the Managing Director: 1. Product and Shipping - The major obstacle for BTI was product assembly. Originally, the majority of the product was assembled in the United States, which increased shipping and packaging costs. With so many parts specified in the order, many times the order would arrive with parts missing. The missing parts could equate to tens of thousands of dollars. Shipping these missing parts separately in another shipment also cost tens of thousands of dollar, plus a delivery delay time of six to eight weeks; all of which came out of the BTI's pockets. 2. Product Adaptation - Safety and product standards varied widely for each of the 80 countries to which BTI exported. Weights, special licenses, product specification requirements, measurement systems, and truck stability can all differ from country to country and can serve as a type of barrier to entry, making it difficult to adapt products accordingly. Technical and safety standards are barriers that serve as a type of protection for the local industry and can stand in the way of successfully pursuing foreign markets. 3. Marketing Challenges - The importance of distribution creates many challenges for BTI as they attempt to determine how each country prefers to operate with regard to their distribution systems. Some countries have competition from a small competitor that only produces one competing product; whereas BTI manufactures over 100 products. Marketing material is another concern for BTI as they attempt to push marketing costs to the distributors. Adapting the marketing material can be costly in terms of translation and cultural differences. In addition, the size of paper in the United States differs from those in some countries, causing many problems when attempting to copy the same layout and With distribution being one of several challenges for BTI, the company claims their distribution network is one of their competitive advantages, as the location and names of their distributors are not revealed. In addition, BTI rotates two offerings yearly: training to their distributors one year and then the next is a distributor's meeting. With a focus on product and shipping, product adaptation, and marketing challenges, the intricacies of selling overseas takes time and patience. Another competitive advantage noted is BTI's cradle to grave strategy, where they follow the product from sale to its final resting place, whether the truck is leased or purchased new or used. They also offer service and maintenance plans with a detailed cost analysis provided to the company prior to purchasing or leasing the product. Expanding abroad will always create challenges for a company. As the Managing Director stated, "If you don't have patience (in the export business), you better do something else." Knowing how to adapt quickly provides BTI with the skills necessary to adjust to the changing needs of each country and its own unique challenges, allowing them to remain competitive.

THE EFFECT OF RESORBABLE MEMBRANE ON BONE REGENERATION IN CALVARIAL DEFECTS OF RATS (백서의 두개골 결손부에서 탈단백우골 이식 시 흡수성악의 효과)

  • Park, Young-Jun;Choi, Guen-Ho;Jang, Jung-Rok;Jung, Seung-Gon;Kim, Young-Joon;Yu, Min-Gi;Kook, Min-Suk;Oh, Hee-Kyun;Ryu, Sun-Youl;Park, Hong-Ju
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.5
    • /
    • pp.365-374
    • /
    • 2009
  • Purpose : This research evaluates the effect of the use of absorbable membrane barrier with deproteinized bovine bone (Bio-$Oss^{(R)}$, Switzerland) on bone healing in surgically created critical-sized defects in rat calvaria. Materials and Methods : Two standardized transosseous circular calvarial defects (5 mm in diameter) are made in each calvarium of 30 rats. These rats are divided into negative control group(n=15), positive control group(n=15) and two experimental groups(n=15). In the negative control group, defects are only filled with blood clots. In the positive control group, defects are filled with autogenous bone obtained from calvarium; in the experimental group 1, defects are filled with deproteinized bovine bone; and in the experimental group 2, defects are filled with deproteinized bovine bone with absorbable membrane. At the postoperative 1 week, 3 weeks. and 6 weeks, clinical. histologic and histomorphometric evaluations of the defects are performed. Results : 1. The grafted bone without membrane in the calvarial bone defect was scattered but, the grafted bone with membrane was stable. 2. $BioMesh^{(R)}$ membrane was absorbed beginning at 3 weeks, and was absorbed considerably at 6 weeks while maintaining the structural form of the membrane. 3. The use of membrane blocked soft tissue invasion. 4. In histomorphometric analysis. it showed the greatest amount of new bone formation in the positive control group. The amount of new bone formation was greater in the experimental group 2 than experimental group 1. At 6 weeks. the amount of new bone formation was greater in the positive control group than experimental group l(p<0.005). Conclusion : These results suggest that membrane increase the stability of grafted bone and protects from soft tissue invasion, and the use of the membrane may promote new bone formation in deproteinized bovine bone graft area.

Comparison of internal and marginal fit of crown according to milling order in a single machinable wax disc (단일 절삭가공용 왁스 디스크 내에서 순차적 절삭가공 순서에 따른 크라운의 내면 및 변연 적합도 비교)

  • Song, Jun-Beom;Lee, Jonghyuk;Ha, Seung-Ryong;Choi, Yu-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.4
    • /
    • pp.395-404
    • /
    • 2021
  • Purpose. The purpose of present study was to evaluate the effect of changing structural stability of wax disc on the fit of prosthesis when the milling proceeded in order. Materials and methods. Prepared maxillary left first molar was used to fabricate a Ni-Cr alloy reference model. This was scanned to design crown and then wax pattern was milled, invested and cast to fabricate prosthesis. The wax patterns located in a row centrally within a single wax disc were set into a total of five groups ranging from WM1 group that was first milled to WM5 group that was last milled and the number of each group was set as 10. Silicone replica technique was used to measure the marginal gap, axial internal gap, line angle internal gap, occlusal internal gap. Data was evaluated with one-way ANOVA with significance level set at α = .05 and then Tukey HSD test was conducted for post analysis. Results. Marginal gap measured in each group, it was 40.41 ± 2.15 ㎛ in WM1 group, 40.44 ± 2.23 ㎛ in WM2 group, 39.96 ± 2.25 ㎛ in WM3 group, 39.96 ± 2.48 ㎛ in WM4 group, and 40.57 ± 2.53 ㎛ in WM5 group. No significant difference was found between groups. The significant difference between the groups was also not found in the axial internal gap, line angle internal gap, and occlusal internal gap. Conclusion. Internal and marginal fit of single crown to the sequential order of milling processing in the single machinable wax disc did not seem to be affected by the sequence.