• Title/Summary/Keyword: Structural Stability Analysis

Search Result 1,410, Processing Time 0.03 seconds

Evaluation of the Structural Stability of Platform Screen Door (PSD) due to Train Wind Pressure (열차 진입 시 풍압에 의한 완전 밀폐형 승강장 스크린 도어(PSD)시스템의 구조 안정성 평가)

  • Lee, Jae-Youl;Ryu, Bong-Jo;Kim, Dong-Hyun;Lee, Eun-Kyu;Shin, Kwang-Bok
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.594-600
    • /
    • 2006
  • In this study, transient and quasi-static analysis were done for the evaluation of structural integrity of the platform screen door due to train wind pressure. Fluent 6.0 was used to calculate the train wind pressure, and Ansys 10.0 was used to evaluate the structural stability of platform screen door due to train wind pressure. Transient analysis was used to check the design requirements of platform screen door, and quasi-static analysis was introduced to save the calculating time and check quickly structural performances when compared to those of transient analysis. The results show that structural stability of the platform screen door under train wind pressure is proven and quasi-static analysis can quickly check the structural integrity of platform screen door.

Analysis of Structural Stability and Optical Performance for Optical Equipment During In-flight Vibration (항공기 진동에 대한 광학 탑재 장비 구조 안정성 및 광학 성능 분석)

  • Jo, Mun Shin;Kim, Sang Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.897-904
    • /
    • 2017
  • Optical equipment consists of various components, and a detector is mounted and operated on aircraft, tanks, and warships for target detection and classification. The structural stability and optical performance of aeronautical optical equipment operated at several kilometers of altitude are degraded owing to vibration generated in the aircraft. It is necessary to verify the structural stability and optical performance requirements of the equipment in vibration environment conditions during the design phase. In this study, vibration environment conditions were analyzed using a test standard and the measurements of the vibration generated in aircraft. The conditions were classified as endurance and operating vibration conditions for structural stability and optical performance verification, respectively. The structural stability was verified according to natural frequency analysis, response analysis for the endurance vibration condition, and static analysis. The optical performance was verified by applying the vibration response analysis results to the optical design/analysis program.

Vibration and stability of axially loaded cracked beams

  • Kisa, Murat
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.305-323
    • /
    • 2012
  • Structural defects such as cracks are the source of local flexibilities and cause deficiencies in structural resistance. In the engineering constructions, structural elements sometimes are subjected to axial loading. Therefore, besides crack ratios and locations, influence of applied load on the stability and dynamical characteristics should also be explored. This study offers a numerical technique for the vibration and stability analysis of axially loaded cracked beams. The model merges finite element and component mode synthesis methods. Initially, stability analysis is completed and then dynamical characteristics of beams are found. Very good conformities between outcomes of the current study and those in literature, give the confidence that proposed method is reliable and effective.

Evaluation of the Structural Stability of Platform Screen Door(PSD) (승강장 스크린 도어(PSD)시스템의 구조 안정성 평가)

  • Lee, Jae-Youl;Ryu, Bong-Jo;Jeon, Jae-Sun;Kim, Dong-Hyun;Lee, Eun-Kyu;Shin, Kwang-Bok
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1190-1197
    • /
    • 2006
  • We have evaluated the structural stability of a platform screen door due to train wind pressure. The platform screen door was installed at the ground and underground station and had 65 meters in length. Also, the platform screen door was a safety device because it was placed between the train and the platform. The finite element analysis was used to calculate the stresses and deflections of platform screen door caused by wind pressure using ANSYS 10.0. Quasi-static analysis was introduced to save calculating time and check quickly structural performances when compared to those of transient analysis. The results show that structural stability of the platform screen door under train wind pressure is proven and quasi-static analysis can quickly check the structural integrity of platform screen door.

  • PDF

The stability of semi-rigid skeletal structures accounting for shear deformations

  • Gorgun, Halil
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1065-1084
    • /
    • 2016
  • The analysis and design of skeletal structures is greatly influenced by the behaviour of beam-to-column connections, where patented designs have led to a wide range of types with differing structural quantities. The behaviour of beam-to-column connections plays an important role in the analysis and design of framed structures. This paper presents an overview of the influence of connection behaviour on structural stability, in the in-plane (bending) mode of sway. A computer-based method is presented for geometrically nonlinear plane frames with semi-rigid connections accounting for shear deformations. The analytical procedure employs transcendental modified stability functions to model the effect of axial force on the stiffness of members. The member stiffness matrix were found. The critical load has been searched as a suitable load parameter for the loss of stability of the system. Several examples are presented to demonstrate the validity of the analysis procedure. The method is readily implemented on a computer using matrix structural analysis techniques and is applicable for the efficient nonlinear analysis of frameworks. Combined with a parametric column effective length study, connection and frame stiffness are used to propose a method for the analysis of semi-rigid frames where column effective lengths are greatly reduced and second order (deflection induced) bending moments in the column may be distributed via the connectors to the beams, leading to significant economies.

A Case Study on the Stability Analysis for Masonry Retaining Walls and Backfill (석축구조물 및 배면지반의 안정성 검토사례연구)

  • Chun, Byung-Sik;Yeoh, Yoo-Hyeon;Kim, Kyung-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.149-160
    • /
    • 2001
  • In this paper, the stability analyses were performed for masonry retaining wallls in Seoul subway System. This masonry retaining wallls were reinforced with earth anchor system for the construction, but it was removed after construction. Therefore, the stability of masonry retaining wallls should be checked after the earth anchors removed. For stability analysis of masonry retaining wallls. FDM analysis(FLAC Ver.3.3) and slope stability analysis (SLOPE/W) were performed applying the test results from laboratory and field tests(Schmidt hammer test, cack examination). As conclusion, the tension force of earth anchors should be kept, therefore, substitutional method was required in order to keep the tension force of earth anchor system.

  • PDF

An Analytical Study on Structural Stability Evaluation and Design Improvement of Fire Truck Water Tank for Aircraft Rescue (항공기 구조용 소방차 탱크룸의 구조 안정성 평가 및 설계 개선에 대한 해석적 연구)

  • Hyukjin Kwon;Myeongcheol Kang;Suil Lim;Han wook Kim;Jungki Hong;Ho Lee;Yongson Hwang
    • Journal of Drive and Control
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In this study, the structural stability of the tank room of an aircraft rescue fire engine is to be studied. The tank room of the aircraft rescue fire engine is filled with fire extinguishing water and chemicals. Fire extinguishing water and chemical are filled to a capacity of about 12.5 tons and are subjected to high stress. The tank room is made of PP material with low yield stress. Structural analysis of the tank room is performed and structural weakness is analyzed. In addition, if a structural problem occurs as a result of structural analysis, an analysis simulation result is presented to derive an improved design and to show the validity of the structural stability of the tank room.

Comparison of Gait Stability of using an Outdoor Rollator with Walking and using a Bassinet as Ambulatory Aid

  • Park, Min-Su;Park, Soo-Hee;Yang, Yeong-Ae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.327-336
    • /
    • 2012
  • Objective: The purpose of this study is to find the problems of stability when people use the bassinet as an ambulatory aid for old people. Background: Many aged people use a bassinet as ambulatory aid. But the safety of using the bassinet as ambulatory aid has not been verified yet. Method: The 13 university-students who don't have musculoskeletal disorders volunteered to participate in this study. According to structural analysis of the both tools, we compared the structural stability of an outdoor rollator with the structural stability of a bassinet. And when the participants walked using both tools, the motions were captured and analysed. We measured the angle of shoulder joint and the angle of trunk from the ground when the participants were walking. And we found the distance from participants' pressure cone apex and greater trochanter. Results: Following the structural analysis, the bassinet has the lower structural stability than the outdoor rollator. When the people used the bassinet as ambulatory aid, the angle of the shoulder joint was bigger than to use the outdoor rollator. The angle of trunk wasn't different between the outdoor rollator and the bassinet. And distance from pressure cone apex to greater trochanter was far to use the bassinet than to use the outdoor rollator. Conclusion: Through the structure analysis and gait analysis of the bassinet and the outdoor rollator, we can be aware of that the bassinet has problem of stability. Therefore the people who use the bassinet as an ambulatory aid, especially supporting body weight, may be hurt due to the problems of stability. Application: This research can be used for developing a study of the ambulatory aid and preventing the accident when the aged people use the ambulatory aid.

Evaluation on Structural Safety for Carbon-Epoxy Composite Wing and Tail Planes of the 1.2 Ton Class WIG

  • Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • In the present study, structural safety and stability on the main wing and tail planes of the 1.2 ton WIG(Wing in Ground Effect) flight vehicle, which will be a high speed maritime transportation system for the next generation, was performed. The carbon-epoxy composite material was used in design of wing structure. The skin-spar with skin-stressed structural type was adopted for improvement of lightness and structural stability. As a design procedure for this study, the design load was estimated with maximum flight load. From static strength analysis results using finite element method of the commercial codes. From the stress analysis results of the main wing, it was confirmed that the upper skin structure between the second rib and the third rib was unstable for the buckling load. Therefore in order to solve this problem, three stiffeners at the buckled region were added. After design modification, even though the weight of the wing was a little bit heavier than the target weight, the structural safety and stability was satisfied for design requirements.