• 제목/요약/키워드: Structural Stability

검색결과 2,724건 처리시간 0.033초

Stability evaluation for the excavation face of shield tunnel across the Yangtze River by multi-factor analysis

  • Xue, Yiguo;Li, Xin;Qiu, Daohong;Ma, Xinmin;Kong, Fanmeng;Qu, Chuanqi;Zhao, Ying
    • Geomechanics and Engineering
    • /
    • 제19권3호
    • /
    • pp.283-293
    • /
    • 2019
  • Evaluating the stability of the excavation face of the cross-river shield tunnel with good accuracy is considered as a nonlinear and multivariable complex issue. Understanding the stability evaluation method of the shield tunnel excavation face is vital to operate and control the shield machine during shield tunneling. Considering the instability mechanism of the excavation face of the cross-river shield and the characteristics of this engineering, seven evaluation indexes of the stability of the excavation face were selected, i.e., the over-span ratio, buried depth of the tunnel, groundwater condition, soil permeability, internal friction angle, soil cohesion and advancing speed. The weight of each evaluation index was obtained by using the analytic hierarchy process and the entropy weight method. The evaluation model of the cross-river shield construction excavation face stability is established based on the idea point method. The feasibility of the evaluation model was verified by the engineering application in a cross-river shield tunnel project in China. Results obtained via the evaluation model are in good agreement with the actual construction situation. The proposed evaluation method is demonstrated as a promising and innovative method for the stability evaluation and safety construction of the cross-river shield tunnel engineerings.

Structural stability of fire-resistant steel (FR490) H-section columns at elevated temperatures

  • Kwon, In-Kyu;Kwon, Young-Bong
    • Steel and Composite Structures
    • /
    • 제17권1호
    • /
    • pp.105-121
    • /
    • 2014
  • A fundamental limitation of steel structures is the decrease in their load-bearing capacity at high temperatures in fire situations such that structural members may require some additional treatment for fire resistance. In this regard, this paper evaluates the structural stability of fire-resistant steel, introduced in the late 1999s, through tensile coupon tests and proposes some experimental equations for the yield stress, the elastic modulus, and specific heat. The surface temperature, deflection, and maximum stress of fire-resistant steel H-section columns were calculated using their own mechanical and thermal properties. According to a comparison of mechanical properties between fire-resistant steel and Eurocode 3, the former outperformed the latter, and based on a comparison of structural performance between fire-resistant steel and ordinary structural steel of equivalent mechanical properties at room temperature, the former had greater structural stability than the latter through $900^{\circ}C$.

Study of structural parameters on the aerodynamic stability of three-tower suspension bridge

  • Zhang, Xin-Jun
    • Wind and Structures
    • /
    • 제13권5호
    • /
    • pp.471-485
    • /
    • 2010
  • In comparison with the common two-tower suspension bridge, due to the lack of effective longitudinal restraint of the center tower, the three-tower suspension bridge becomes a structural system with greater flexibility, and more susceptible to the wind action. By taking a three-tower suspension bridge-the Taizhou Bridge over the Yangtze River with two main spans of 1080 m as example, effects of structural parameters including the cable sag to span ratio, the side to main span ratio, the deck's dead load, the deck's bearing system, longitudinal structural form of the center tower and the cable system on the aerodynamic stability of the bridge are investigated numerically by 3D nonlinear aerodynamic stability analysis, the favorable structural system of three-tower suspension bridge with good wind stability is discussed. The results show that good aerodynamic stability can be obtained for three-tower suspension bridge as the cable sag to span ratio is assumed ranging from 1/10 to 1/11, the central buckle are provided between main cables and the deck at midpoint of main spans, the longitudinal bending stiffness of the center tower is strengthened, and the spatial cable system or double cable system is employed.

내화강재 적용 단순 보부재의 고온 거동 비교 연구 (Comparative Study of Beams made up of Fire Resistant Steels)

  • 권인규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.111-112
    • /
    • 2017
  • Fire is very serious condition in steel based structures. Therefore, to enhance the structural stability of columns and beams in high temperatures, fire resistant steels and TMC fire resistant steels are developed from steel manufacturing companies. In this study to evaluate the structural stability and compare the resistant performance, a fire engineering design method was applied and fire resistant steels showed the better performance than other two materials.

  • PDF

Vibration and stability of axially loaded cracked beams

  • Kisa, Murat
    • Structural Engineering and Mechanics
    • /
    • 제44권3호
    • /
    • pp.305-323
    • /
    • 2012
  • Structural defects such as cracks are the source of local flexibilities and cause deficiencies in structural resistance. In the engineering constructions, structural elements sometimes are subjected to axial loading. Therefore, besides crack ratios and locations, influence of applied load on the stability and dynamical characteristics should also be explored. This study offers a numerical technique for the vibration and stability analysis of axially loaded cracked beams. The model merges finite element and component mode synthesis methods. Initially, stability analysis is completed and then dynamical characteristics of beams are found. Very good conformities between outcomes of the current study and those in literature, give the confidence that proposed method is reliable and effective.

고속철도 수직구 터널구조물에 적용된 파형강판공법의 구조적 안정성 검토 (The Evaluation of Structural Stability of Corrugated Steel Plate Method applied in High-Speed Railway Vertical Tunnel Structures)

  • 정지승;신화철;김진구
    • 한국안전학회지
    • /
    • 제31권2호
    • /
    • pp.64-69
    • /
    • 2016
  • In this paper, structural analysis of High-Speed railway vertical tunnel structures was performed to verify the structural stability. The corrugated steel plate method was applied to the vertical tunnel structures for its simple construction method and low cost. The structural stability of Wall, Connection and Storage section was performed with LRFD and ASD design method at joint part, buckling, stress and plastic hinge. From the results, all of vertical tunnel structures shown the structural stability regardless of design method and structure types. So, the application of corrugated steel plate in vertical tunnel structures instead of cast-in-placed concrete was quite enough.

항공기 구조용 소방차 탱크룸의 구조 안정성 평가 및 설계 개선에 대한 해석적 연구 (An Analytical Study on Structural Stability Evaluation and Design Improvement of Fire Truck Water Tank for Aircraft Rescue)

  • 권혁진;강명철;임수일;김한욱;홍정기;이호;황영선
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권1호
    • /
    • pp.1-7
    • /
    • 2023
  • In this study, the structural stability of the tank room of an aircraft rescue fire engine is to be studied. The tank room of the aircraft rescue fire engine is filled with fire extinguishing water and chemicals. Fire extinguishing water and chemical are filled to a capacity of about 12.5 tons and are subjected to high stress. The tank room is made of PP material with low yield stress. Structural analysis of the tank room is performed and structural weakness is analyzed. In addition, if a structural problem occurs as a result of structural analysis, an analysis simulation result is presented to derive an improved design and to show the validity of the structural stability of the tank room.

75톤급 연소기 헤드부의 구조안정성 평가 (Evaluation of Structural Stability for a 75-tonf Class Thrust Chamber Mixing Head)

  • 유철성;이금오;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.515-519
    • /
    • 2011
  • 75톤급 연소기 헤드부의 구조적인 안정성을 검증하고자 구조시험을 수행하였다. 연소기 헤드부는 재생냉각된 연료와 극저온 산화제에 의하여 고압의 하중을 받을 뿐만 아니라 엔진에서 발생된 추력을 전달한다. 따라서 연소기 헤드부가 소성변형 또는 구조적인 손상 없이 작동하기 위해서는 헤드부의 구조안정성이 매우 중요한 요소이다. 본 연구에서는 구조안정성 평가를 위하여 전자빔용접과 티그용접 두 가지 종류의 용접을 사용하여 헤드부를 제작하고, 구조적인 안정성을 평가하였다. 구조시험 결과 전자빔용접을 적용한 연소기 헤드부가 설계 하중조건에서 구조적인 손상 없이 안정하였으며, 티그용접 연소기 헤드부에 비하여 구조적으로 더 안정함을 보여주었다.

  • PDF

경계조건에 따른 일반강재 적용 보부재의 내화성능 연구 (Study on the Fire Resistance of Structural Beams Made of Ordinary Structural Steel(SS 400) According to Boundary Conditions)

  • 권인규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.167-168
    • /
    • 2014
  • Building destruction can be occurred by decreasing of structural stability and deformation according to fire. Especially, a structural behavior of beam can be shown a slightly difference by beam types. In this paper, an evaluation of the structural stability of beam made of ordinary structural steel designed by fixed and simple boundary condition was done by an analytic method using mechanical properties of SS 400 and an heat transfer theory.

  • PDF