• Title/Summary/Keyword: Structural Simulation

검색결과 2,785건 처리시간 0.035초

A Study on Uncertainty Analyses of Monte Carlo Techniques Using Sets of Double Uniform Random Numbers

  • Lee, Dong Kyu;Sin, Soo Mi
    • Architectural research
    • /
    • 제8권2호
    • /
    • pp.27-36
    • /
    • 2006
  • Structural uncertainties are generally modeled using probabilistic approaches in order to quantify uncertainties in behaviors of structures. This uncertainty results from the uncertainties of structural parameters. Monte Carlo methods have been usually carried out for analyses of uncertainty problems where no analytical expression is available for the forward relationship between data and model parameters. In such cases any direct mathematical treatment is impossible, however the forward relation materializes itself as an algorithm allowing data to be calculated for any given model. This study addresses a new method which is utilized as a basis for the uncertainty estimates of structural responses. It applies double uniform random numbers (i.e. DURN technique) to conventional Monte Carlo algorithm. In DURN method, the scenarios of uncertainties are sequentially selected and executed in its simulation. Numerical examples demonstrate the beneficial effect that the technique can increase uncertainty degree of structural properties with maintaining structural stability and safety up to the limit point of a breakdown of structural systems.

The establishment of IB-SEM numerical method and verification of fluid-solid interaction

  • Wang, Jing;Li, Shu-cai;Mao, Xuerui;Li, Li-ping;Shi, Shao-shuai;Zhou, Zong-qing
    • Geomechanics and Engineering
    • /
    • 제15권6호
    • /
    • pp.1161-1171
    • /
    • 2018
  • The interaction between particles and fluid was investigated by IB-SEM numerical method which is a combination of combing the spectral/hp element method and the rigid immersed boundary method. The accuracy of this numerical method was verified based on the computed results with the traditional body-fitted mesh in numerical simulation of the flow through the cylinder. Then the governing equations of particles motion and contact in fluid are constructed. The movement of the particles and the interaction between the fluid and the particles are investigated. This method avoided the problem of low computational efficiency and error caused by the re-division of the grid when the solids moved. Finally, the movement simulation of multi particles in the fluid was carried out, which can provide a completely new numerical simulation method.

Reliability-based design optimization using reliability mapping functions

  • Zhao, Weitao;Shi, Xueyan;Tang, Kai
    • Structural Engineering and Mechanics
    • /
    • 제62권2호
    • /
    • pp.125-138
    • /
    • 2017
  • Reliability-based design optimization (RBDO) is a powerful tool for design optimization when considering probabilistic characteristics of design variables. However, it is often computationally intensive because of the coupling of reliability analysis and cost minimization. In this study, the concept of reliability mapping function is defined based on the relationship between the reliability index obtained by using the mean value first order reliability method and the failure probability obtained by using an improved response surface method. Double-loop involved in the classical RBDO can be converted into single-loop by using the reliability mapping function. Since the computational effort of the mean value first order reliability method is minimal, RBDO by using reliability mapping functions should be highly efficient. Engineering examples are given to demonstrate the efficiency and accuracy of the proposed method. Numerical results indicated that the proposed method has the similar accuracy as Monte Carlo simulation, and it can obviously reduce the computational effort.

Evaluation of Probabilistic Finite Element Method in Comparison with Monte Carlo Simulation

  • 이재영;고홍석
    • 한국농공학회지
    • /
    • 제32권E호
    • /
    • pp.59-66
    • /
    • 1990
  • Abstract The formulation of the probabilistic finite element method was briefly reviewed. The method was implemented into a computer program for frame analysis which has the same analogy as finite element analysis. Another program for Monte Carlo simulation of finite element analysis was written. Two sample structures were assumed and analized. The characteristics of the second moment statistics obtained by the probabilistic finite element method was examined through numerical studies. The applicability and limitation of the method were also evaluated in comparison with the data generated by Monte Carlo simulation.

  • PDF

차체 강성해석을 위한 구조용 접착제 해석모델링 연구 (Modelling of Structural Adhesives for Body Stiffness Analysis in Automobile)

  • 서성훈;주재갑
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1410-1414
    • /
    • 2007
  • In modern automobile body manufacturing, the structural adhesive bonding is recognized to one of new joining techniques for the purpose of light weight body and its application scope in the automobile body has been gradually magnified. Specially, the structural adhesives have the advantages of not only enhancing the design flexibility of automobile body, but also improving automobile performances such as stiffness, crashworthiness and durability. In order to evaluate the performance simulation of the automobile body applied with structural adhesives, it is necessary to develop modeling techniques in the structural adhesives in advance. This paper aims to investigate modeling methodology of structural adhesive junctions for body stiffness simulation. Two main modeling points are the element selection for adhesives and the connectivity between adhesives and adherends. Both of the 1D element used in classical modeling and the 3D element which are more accurate are considered for the adhesives, and the congruent and incongruent mesh models of the adherends are compared for connectivity modeling. By applying the several kinds of modeling methodology to the simple structures, the simulation results are compared and some modeling guidelines are obtained.

  • PDF

개선된 평가점 선정기법을 이용한 응답면기법 (Improved Response Surface Method Using Modified Selection Technique of Sampling Points)

  • 김상효;나성원;황학주
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 가을 학술발표회논문집
    • /
    • pp.248-255
    • /
    • 1993
  • Recently, due to the increasing attention to the structural safety under uncertain environments, many researches on the structural reliability analysis have been peformed. Some useful methods are available to evaluate performance reliability of structures with explicit limit states. However, for large structures, in which structural behaviors can be analyzed with finite element models and the limit states are only expressed implicitly, Monte-Carlo simulation method has been mainly used. However, Monte-Carlo simulation method spends too much computational time on repetitive structural analysis. Many alternative methods are suggested to reduce the computational work required in Monte-Carlo simulation. Response surface method is widely used to improve the efficiency of structural reliability analysis. Response surface method is based on the concept of approximating simple polynomial function of basic random variables for the limit state which is not easily expressed in explicit forms of design random variables. The response surface method has simple algorithm. However, the accuracy of results highly depends on how properly the stochastic characteristics of the original limit state has been represented by approximated function, In this study, an improved response surface method is proposed in which the sampling points for creating response surface are modified to represent the failure surface more adequately and the combined use of a linear response surface function and Rackwitz-Fiessler method has been employed. The method is found to be more effective and efficient than previous response surface methods. In addition more consistent convergence is achieved, Accuracy of the proposed method has been investigated through example.

  • PDF

LIFE-SPAN SIMULATION AND DESIGN APPROACH FOR REINFORCED CONCRETE STRUCTURES

  • An, Xuehui;Maekawa, Koichi;Ishida, Tetsuya
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.3-17
    • /
    • 2007
  • This paper provides an introduction to life-span simulation and numerical approach to support the performance design processes of reinforced concrete structures. An integrated computational system is proposed for life-span simulation of reinforced concrete. Conservation of moisture, carbon dioxide, oxygen, chloride, calcium and momentum is solved with hydration, carbonation, corrosion, ion dissolution. damage evolution and their thermodynamic/mechanical equilibrium. Coupled analysis of mass transport and damage mechanics associated with steel corrosion is presented for structural performance assessment of reinforced concrete. Multi-scale modeling of micro-pore formation and transport phenomena of moisture and ions are mutually linked for predicting the corrosion of reinforcement and volumetric changes. The interaction of crack propagation with corroded gel migration can also be simulated. Two finite element codes. multi-chemo physical simulation code (DuCOM) and nonlinear dynamic code of structural reinforced concrete (COM3) were combined together to form the integrated simulation system. This computational system was verified by the laboratory scale and large scale experiments of damaged reinforced concrete members under static loads, and has been applied to safety and serviceability assessment of existing structures. Based on the damage details predicted by the nonlinear finite element analytical system, the life-span-cost of RC structures including the original construction costs and the repairing costs for possible damage during the service life can be evaluated for design purpose.

  • PDF

지반 구조 상호작용을 고려한 교량 시뮬레이션 시스템 (Bridge Simulation System with Soil-Foundation-Structure Interaction)

  • 김익환;한봉구
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권4호
    • /
    • pp.168-178
    • /
    • 2008
  • 하이브리드 시뮬레이션 실험방법은 단일실험모드하의 물리적 또는 수치해석적 시뮬레이션에 의하여 지진발생시 구조물을 평가하는 다양한 기술 중에 하나이다. 본 논문에서는 지진하중하의 교량구조 시스템의 해석과 실험을 위해서 계산과 실험 시뮬레이션을 통합한 소프트웨어체제를 개발하였다. 개발한 하이브리드시뮬레이션 소프트웨어체제를 이용하여 대규모 네트워크로 분산된 실험 또는 전산장비에 참여하고 있는 교량구조시스템에 대한 지진응답을 평가할 수 있었다. 본 논문에서는 적용 예를 통하여 지반 구조 상호작용을 고려한 교량의 시뮬레이션 해석방법을 제시하였다.

자기베어링 스테이지의 동적 거동 통합 시뮬레이션을 통한 제어 설계 (Integrated Dynamic Simulation of a Magnetic Bearing Stage and Control Design)

  • 김병섭
    • 한국생산제조학회지
    • /
    • 제22권4호
    • /
    • pp.730-734
    • /
    • 2013
  • The dynamic simulation of machine tools and motion control systems has been widely used for optimization, design verification, control design, etc. There are three main streams in dynamic simulation: structural dynamic analysis based onthe finite element method, dynamic motion analysis based on equations of motion, and control system analysis based on transfer functions. Generally, one of these dynamic simulation methods is chosen and employed for specific purposes. In this study, an integrated dynamic simulation is introduced, in which the structure, motion, and control dynamics are combined together. Commercially well-known software is used in the integrated dynamic simulation: ANSYS, ADAMS, and Matlab/Simulink. Using the integrated dynamic simulation, the dynamics of a magnetic bearing stage is analyzed and the causes of oscillation and noise are identified. A controller design for suppressing a flexible dynamic mode is carried out and verified through the integrated dynamic simulation.

Structural reliability estimation based on quasi ideal importance sampling simulation

  • Yonezawa, Masaaki;Okuda, Shoya;Kobayashi, Hiroaki
    • Structural Engineering and Mechanics
    • /
    • 제32권1호
    • /
    • pp.55-69
    • /
    • 2009
  • A quasi ideal importance sampling simulation method combined in the conditional expectation is proposed for the structural reliability estimation. The quasi ideal importance sampling joint probability density function (p.d.f.) is so composed on the basis of the ideal importance sampling concept as to be proportional to the conditional failure probability multiplied by the p.d.f. of the sampling variables. The respective marginal p.d.f.s of the ideal importance sampling joint p.d.f. are determined numerically by the simulations and partly by the piecewise integrations. The quasi ideal importance sampling simulations combined in the conditional expectation are executed to estimate the failure probabilities of structures with multiple failure surfaces and it is shown that the proposed method gives accurate estimations efficiently.