• 제목/요약/키워드: Structural Model Analysis

검색결과 7,603건 처리시간 0.035초

고감쇠 면진베어링에 의해 지지된 면진구조물의 지진응답해석 (Seismic Response Analysis of a Base-Isolated Structure Supported on High Damping Rubber Bearings)

  • 유봉;이재한;구경회
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.99-106
    • /
    • 1995
  • The seismic responses of a base Isolated Pressurized Water Reactor(PWR) are investigated using a mathematical model which expresses the superstructure as a linear lumped mass-spring and the seismic Isolator as an equivalent spring-damper. Time history analyses are performed for the 1940 El Centre earthquake with linear amplification. In the analysis 5% of structural damping is used for the superstructure. The effects of high damping rubber bearing on seismic response of the superstructure in base isolated system are evaluated for four stiffness model types. The acceleration responses in base isolated PWR superstructure with high damping rubber bearings are much smaller than those in fixed base structure. In the higher strain region where stiffness behaves non-linearly, the acceleration responses modelled by one equivalent stiffness are smaller than those in nonlinear spring model, and the higher stiffness spring model of isolator exhibits larger peak acceleration response at superstructure in the frequency range above 2.0 Hz. when subjected to linearly amplified 1940 El Centre earthquake.

  • PDF

종류별 이륜차 프레임에 대한 구조해석 (Structural Analysis for Bicycle Frame by Type)

  • 한문식;조재웅
    • 한국자동차공학회논문집
    • /
    • 제20권6호
    • /
    • pp.146-155
    • /
    • 2012
  • This study aims to analyze durability by comparing displacement on vibration at driving bicycle frame models of 1, 2, 3 and 4. Among maximum equivalent stresses at 4 kinds of models, model 1 has highest value with 410.39 MPa and becomes 30 times than model 4 with lowest value. The natural frequency number at Model 4 increases more than the other models. Among four models, the number of frequency at model 1 becomes lowest at harmonic vibration with real loading condition. In cases of four kinds of models, the maximum stress is shown near the assembly of rear wheel and the maximum displacement is shown near saddle assembly at this harmonic condition. The structural result about this study can be effectively utilized on the design of bicycle frame by investigating durability and prevention against its damage.

Impact of composite materials on buried structures performance against blast wave

  • Mazek, Sherif A.;Wahab, Mostafa M.A.
    • Structural Engineering and Mechanics
    • /
    • 제53권3호
    • /
    • pp.589-605
    • /
    • 2015
  • The use of the rigid polyurethane foam (RPF) to strengthen buried structures against blast terror has great interests from engineering experts in structural retrofitting. The aim of this study is to use the RPF to strengthen the buried structures under blast load. The buried structure is considered to study the RPF as structural retrofitting. The Guowei model (Guowei et al. 2010) is considered as a case study. The finite element analysis (FEA) is also used to model the buried structure under shock wave. The buried structure performance is studied based on detonating different TNT explosive charges. There is a good agreement between the results obtained by both the Guowei model and the proposed numerical model. The RPF improves the buried structure performance under the blast wave propagation.

동하중 하에서 축소 모델의 구성과 전체 시스템 응답과의 비교 연구 (Study on the Time Response of Reduced Order Model under Dynamic Load)

  • 박수현;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.11-18
    • /
    • 2004
  • In this paper, an efficient model reduction scheme is presented for large scale dynamic systems. The method is founded on a modal analysis in which optimal eigenvalue is extracted from time samples of the given system response. The techniques we discuss are based on classical theory such as the Karhunen-Loeve expansion. Only recently has it been applied to structural dynamics problems. It consists in obtaining a set of orthogonal eigenfunctions where the dynamics is to be projected. Practically, one constructs a spatial autocorrelation tensor and then performs its spectral decomposition. The resulting eigenfunctions will provide the required proper orthogonal modes(POMs) or empirical eigenmodes and the correspondent empirical eigenvalues (or proper orthogonal values, POVs) represent the mean energy contained in that projection. The purpose of this paper is to compare the reduced order model using Karhunen-Loeve expansion with the full model analysis. A cantilever beam and a simply supported plate subjected to sinusoidal force demonstrated the validity and efficiency of the reduced order technique by K-L method.

  • PDF

Minimum life-cycle cost design of ice-resistant offshore platforms

  • Li, Gang;Zhang, Da-Yong;Yue, Qian-Jin
    • Structural Engineering and Mechanics
    • /
    • 제31권1호
    • /
    • pp.11-24
    • /
    • 2009
  • In China, the oil and natural gas resources of Bohai Bay are mainly marginal oil fields. It is necessary to build both ice-resistant and economical offshore platforms. However, risk is involved in the design, construction, utilization, maintenance of offshore platforms as uncertain events may occur within the life-cycle of a platform under the extreme ice load. In this study, the optimum design model of the expected life-cycle cost for ice-resistant platforms based on cost-effectiveness criterion is proposed. Multiple performance demands of the structure, facilities and crew members, associated with the failure assessment criteria and evaluation functions of costs of construction, consequences of structural failure modes including damage, revenue loss, death and injury as well as discounting cost over time are considered. An efficient approximate method of the global reliability analysis for the offshore platforms is provided, which converts the implicit nonlinear performance function in the conventional reliability analysis to linear explicit one. The proposed life-cycle optimum design formula are applied to a typical ice-resistant platform in Bohai Bay, and the results demonstrate that the life-cycle cost-effective optimum design model is more rational compared to the conventional design.

강소농교육 참여 농업인의 직무성과와 학습지향성, 자기효능감, 학습전이의 구조적 관계 (Structural Relations of Learning Orientation, Self-Efficacy, Learning Transfer and Job Performance of Farmers who Participated in the Strong and Small Farms Education)

  • 김사균;양석준
    • 농촌지도와개발
    • /
    • 제22권4호
    • /
    • pp.455-464
    • /
    • 2015
  • The purposes of this study are to explain and identify the frame of structural relations of learning orientation, self-efficacy, learning transfer and job performance of farmers who participated in the strong and small farms education. This is an experimental research with the data collected from 495 farmers who have taken the farm education. Based on the collected data, the study conducted a structural equation modeling(SEM) to confirm the validity and analyze the structural relations of the suggested model. Using measured and latent variables drew from the analyses, the study set a structural equation model and tested the model by analysis of the structural equation modeling with AMOS 18.0. The results found from the empirical analysis can be summarized as follows. 1) Learning orientation and self-efficacy positively influenced job performance through learning transfer. 2) The hypothesis that learning orientation would have direct impact on job performance was not supported. 3) The strong and small farms education is useful to expand learning transfer and to enhance job performance. So, government policy support has to reinforce learning support on farmers in order to achieve high performance of learning and job management through farm educations.

Stress path adapting Strut-and-Tie models in cracked and uncracked R.C. elements

  • Biondini, Fabio;Bontempi, Franco;Malerba, Pier Giorgio
    • Structural Engineering and Mechanics
    • /
    • 제12권6호
    • /
    • pp.685-698
    • /
    • 2001
  • In this paper, a general method for the automatic search for Strut-and-Tie (S&T) models representative of possible resistant mechanisms in reinforced concrete elements is proposed. The representativeness criterion here adopted is inspired to the principle of minimum strain energy and requires the consistency of the model with a reference stress field. In particular, a highly indeterminate pin-jointed framework of a given layout is generated within the assigned geometry of the concrete element and an optimum truss is found by the minimisation of a suitable objective function. Such a function allows us to search the optimum truss according to a reference stress field deduced through a F.E.A. and assumed as representative of the given continuum. The theoretical principles and the mathematical formulation of the method are firstly explained; the search for a S&T model suitable for the design of a deep beam shows the method capability in handling the reference stress path. Finally, since the analysis may consider the structure as linear-elastic or cracked and non-linear in both the component materials, it is shown how the proposed procedure allows us to verify the possibilities of activation of the design model, oriented to the serviceability condition and deduced in the linear elastic field, by following the evolution of the resistant mechanisms in the cracked non-linear field up to the structural failure.

Flexural behaviour of GFRP reinforced concrete beams under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Pukazhendhi, D.M.;Samuel, F. Giftson;Vishnuvardhan, S.
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.361-373
    • /
    • 2022
  • This paper examines the flexural performance of concrete beams reinforced with glass fibre-reinforced polymer (GFRP) bars under fatigue loading. Experiments were carried out on concrete beams of size 1500×200×100 mm reinforced with 10 mm and 13 mm diameter GFRP bars under fatigue loading. Experimental investigations revealed that fatigue loading affects both strength and serviceability properties of GFRP reinforced concrete. Experimental results indicated that (i) the concrete beams experienced increase in deflection with increase in number of cycles and failed suddenly due to snapping of rebars and (ii) the fatigue life of concrete beams drastically decreased with increase in stress level. Analytical model presented a procedure for predicting the deflection of concrete beams reinforced with GFRP bars under cyclic loading. Deflection of concrete beams was computed by considering the aspects such as stiffness degradation, force equilibrium equations and effective moment of inertia. Nonlinear finite element (FE) analysis was performed on concrete beams reinforced with GFRP bars. Appropriate constitutive relationships for concrete and GFRP bars were considered in the numerical modelling. Concrete non linearity has been accounted through concrete damage plasticity model available in ABAQUS. Deflection versus number of cycles obtained experimentally for various beams was compared with the analytical and numerical predictions. It was observed that the predicted values are comparable (less than 20% difference) with the corresponding experimental observations.

건전도 모니터링을 위한 P.C. 상자형 교량의 동적 특성 분석 (A Study on Dynamic Characteristics of P.C. Box Girder Bridge for Condition Monitoring)

  • 이선구;이성우
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.131-137
    • /
    • 1996
  • To perform condition monitoring of P.C. Box girder bridge under ambient traffic, dynamic characteristics were identified using the results of load test an analysis. It was found that natural frequencies obtained from the measured acceleration data for the forced vibration part and free vibration part were nearly identical. Thus it can be concluded that dynamic parameters are properly determined under ambient traffic condition. Finite element model for analysis was calibrated using measured frequencies. Change of dynamic characteristics were predicted through analysis of the established finite element model with anticipated change.

  • PDF