• Title/Summary/Keyword: Structural Model Analysis

Search Result 7,603, Processing Time 0.032 seconds

Causal Relationship Analysis of Winning Factors in Football Game : Structural Equation Model (구조방정식 모형(SEM)을 이용한 축구 요인간 인과관계 분석)

  • Kim, Ju-Hyung;Chang, Kyu-Chang;Kim, Sang-Hye;Park, Jung-Min;Ha, Chunghun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.2
    • /
    • pp.101-107
    • /
    • 2015
  • Modern football has transformed into a scientific football based on data. With this trend, various methods for tactics studies and outcome prediction have been developed on the perspective of data analysis. In this paper, we propose a structural equation model for football game. We analyze critical factors that affect to the winning of game except psychological parts and the causal relationship between latent variables and observed variables is statistically verified through the proposed structural equation model. The results show that the Passing ability and the Ball possession affect to the Attack ability, and consequently it has a positive impact on the winning of game.

Dynamic Model Establishment of a Nonlinear Structure with Sliding Mode Condition Using the Substructure Synthesis Method (부구조물 합성법을 이용한 슬라이딩 모드 조건을 갖는 비선형 구조의 동적 모델 수립)

  • Kim, Dae-Kwan;Lee, Min-Su;Ko, Tae-Hwan;Han, Jae-Hung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.814-821
    • /
    • 2006
  • A structural coupling method is developed for the dynamic analysis of a nonlinear structure with concentrated nonlinear hinge joints or sliding lines. The component mode synthesis method is extended to couple substructures and the nonlinear models. In order to verify the improved coupling method, a numerical plate model consisting of two substructures and torsional springs, is synthesized by using the proposed method and its modal parameters are compare with analysis data. Then the coupling method is applied to a three-substructure-model with the nonlinearity of sliding lines between the substructures. The coupled structural model is verified from its dynamic analysis. The analysis results show that the improved coupling method is adequate for the structural nonlinear analyses with the nonlinear hinge and sliding mode condition.

Exploring a Way to Overcome Multicollinearity Problems by Using Hierarchical Construct Model in Structural Equation Model (SEM에서 위계모형을 이용한 다중공선성 문제 극복방안 연구 : 소셜커머스의 재구매의도 영향요인을 중심으로)

  • Kwon, Sundong
    • Journal of Information Technology Applications and Management
    • /
    • v.22 no.2
    • /
    • pp.149-169
    • /
    • 2015
  • This study tried to find out how to overcome multicollinearity problems in the structural equation model by creating a hierarchical construct model about the repurchase intention of social commerce. This study selected, as independent variables, price, quality, service, and social influence, based on literature review about social commerce, and then, as detailed variables of independent variables, selected system quality, information quality, transaction safety, order fulfillment and after-sales service, communication, subjective norms, and reputation. As results of empirical analysis about hierarchical construct model, all the independent variables were accepted having a significant impact on repurchase intention of social commerce. Next, this study analyzed the competition model that eight independent variables of price, system quality, information quality, transaction safety, order fulfillment and after-sales service, communication, subjective norm, and reputation directly influence the repurchase intention of social commerce. As results of empirical analysis, system quality, information quality, transaction safety, communication appeared to be insignificant. This study showed that hierarchical construct model is useful to overcome the multicollinearity problem in structural equational model and to increase explanatory power.

Structural identification of gravity-type caisson structure via vibration feature analysis

  • Lee, So-Young;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.259-281
    • /
    • 2015
  • In this study, a structural identification method is proposed to assess the integrity of gravity-type caisson structures by analyzing vibration features. To achieve the objective, the following approaches are implemented. Firstly, a simplified structural model with a few degrees-of-freedom (DOFs) is formulated to represent the gravity-type caisson structure that corresponds to the sensors' DOFs. Secondly, a structural identification algorithm based on the use of vibration characteristics of the limited DOFs is formulated to fine-tune stiffness and damping parameters of the structural model. Finally, experimental evaluation is performed on a lab-scaled gravity-type caisson structure in a 2-D wave flume. For three structural states including an undamaged reference, a water-level change case, and a foundation-damage case, their corresponding structural integrities are assessed by identifying structural parameters of the three states by fine-tuning frequency response functions, natural frequencies and damping factors.

Analytical and numerical analysis for unbonded flexible risers under axisymmetric loads

  • Guo, Yousong;Chen, Xiqia;Wang, Deyu
    • Ocean Systems Engineering
    • /
    • v.6 no.2
    • /
    • pp.129-141
    • /
    • 2016
  • Due to the structural complexity, the response of a flexible riser under axisymmetric loads is quite difficult to determine. Based on equilibrium conditions, geometrical relations and constitutive equations, an analytical model that can accurately predict the axisymmetric behavior of flexible risers is deduced in this paper. Since the mutual exclusion between the contact pressure and interlayer gap is considered in this model, the influence of the load direction on the structural behavior can be analyzed. Meanwhile, a detailed finite element analysis for unbonded flexible risers is conducted. Based on the analytical and numerical models, the structural response of a typical flexible riser under tension, torsion, internal and outer pressure has been studied in detail. The results are compared with experimental data obtained from the literature, and good agreement is found. Studies have shown that the proposed analytical and numerical models can provide an insightful reference for analysis and design of flexible risers.

Vibro-acoustic analysis of un-baffled curved composite panels with experimental validation

  • Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.93-107
    • /
    • 2017
  • The article presents the vibration and acoustic responses of un-baffled doubly curved laminated composite panel structure under the excitation of a harmonic point load. The structural responses are obtained using a simulation model via ANSYS including the effect various geometries (cylindrical, elliptical, spherical and hyperboloid). Initially, the model has been established by solving adequate number of available examples to show the convergence and comparison behaviour of the natural frequencies. Further, the acoustic responses are obtained using an indirect boundary element approach for the coupled fluid-structure analysis in LMS Virtual.lab by importing the natural frequency values. Subsequently, the values for the sound power level are computed using the present numerical model and compared with that of the available published results and in-house experimentally obtained data. Further, the acoustic responses (mean-square velocity, radiation efficiency and sound power level) of the doubly curved layered structures are evaluated using the current simulation model via several numerical experimentations for different structural parameters and corresponding discussions are provided in detail.

MODEL FOR SUBWAY-INDUCED STRUCTURAL VIBRATION (지하철 진동이 구조물에 미치는 영향분석 모델)

  • 김희철;이동근;민경원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.199-204
    • /
    • 1993
  • Noise and vibration induced by subway operation are one of the major factor that annoying residents living near the. railway. In general, lateral vibration was the major concern when we are considering vibration of the building. Since the energy due to earthquake is enormous it affects wide area. However, the vertical vibration became a major concern in considering the vibration induced by subway because relatively smaller energy affects only nearby areas than that of earthquake. Analysis model of the structure for the vertical vibration should consider the effect of beam vibration. Thus, the model of the structure for the lateral vibration can not be applied. Appropriate analysis model which can consider the inertia force of the beam is necessary when analyzing a structure for the vertical vibration. Modeling technique for the vertical vibration analysis of structures has been studied on this paper. It is recommeneded to use 2 or more elements for columns and to use 3 or more elements for beams when analyzing structures for vertical vibration induced by subway.

  • PDF

A Study on Structural Analysis and Optimum Shape Design of Tilting Index Table (틸팅 인덱스 테이블 구조해석 및 최적형상 설계에 관한 연구)

  • Lee, Mun-Jae;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.86-93
    • /
    • 2010
  • The tilting index table has attached to CNC machining center with 3axes, it can be improvement of its performance and its machining efficiency. The tilting index table is a key unit in order to manufacture some non-rotational and 3-dimensional parts, using the conventional machining center. In this study, structural analysis is carried out by FEM simulation using the commercial software ANSYS Workbench 11 to develop tilting index table using direct drive motor. The shape of the tilting index table obtained from the optimization was analyzed and compared with the initial model. Also, the initial model was modified based on the optimization model and the result was verified to have the acceptable improvement.

Evaluation of Dynamic Characteristics of the Box Beam of HANARO Reactor Pool (하나로 원자로 수조내 사각보의 동특성 평가)

  • Kim, Seong-Ho;Dan, Ho-Jin;Ryu, Jeong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.525-525
    • /
    • 2005
  • This study is for the seismic analysis and the structural integrity evaluation of the box beam for supporting nuclear fuel-transfer-basket of the HANARO reactor pool. For performing the seismic analysis and evaluating the structural integrity in air or submerged condition, the finite element model of the fuel-transfer-basket and its supporting box beam(the coupled model) was developed. The hydrodynamic effect is also considered by using added mass concept. The seismic response spectrum analyses of the coupled model under the design floor response spectrum loads of Safe Shutdown Earthquake(SSE) were performed. Through the numerical experiments, the analysis results show that the stress values of the coupled model lot the structural integrity are within the ASME Code limits.

  • PDF

Utilization of R Program for the Partial Least Square Model: Comparison of SmartPLS and R (부분최소제곱모형을 위한 R 프로그램의 활용: SmartPLS와 R의 비교)

  • Kim, Yong-Tae;Lee, Sang-Jun
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.117-124
    • /
    • 2015
  • As the acceptance of statistical analysis has been increased because of Big Data, the needs for an advanced second generation of statistical analysis method like Structural Equation Model are also increasing. This study suggests how R-Program, as open software, can be utilized when Partial Least Square Model, one of the SEMs, is applied to statistical analysis. R is a free software as a part of GNU projects as well as a powerful and useful tool for statistical analysis including Big Data. The study utilized R and SmartPLS, a representative statistical package of PLS-SEM, and analyzed internal consistency reliability, convergent validity, and discriminant validity of the measurement model. The study also analyzed path coefficients and moderator effects of the structural model and compared the results, respectively. The results indicated that R showed the same results with SmartPLS on the measurement model and the structural model. Therefore, the study confirmed that R could be a powerful tool that is alternative to a commercial statistical package in the future.