• Title/Summary/Keyword: Structural Mismatch

Search Result 80, Processing Time 0.025 seconds

Structural suitability of GdFeO3 as a magnetic buffer layer for GdBa2Cu3O7-x superconducting thin films

  • Park, H.S.;Oh, J.Y.;Song, B.H.;Kang, B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.2
    • /
    • pp.14-18
    • /
    • 2021
  • We investigated the structural suitability of GdFeO3 (GdFO) as a buffer layer for the GdBa2xCu3O7-x (GdBCO) superconducting films. GdFO films with different thicknesses and GdBCO thin films were all prepared by using a pulsed laser deposition technique. The analyses of X-ray diffraction and EXAFS data indicates that the c-axis parameter increases and the Fe-O bond length decreases with the GdFO thickness due to the compressive stain induced by the lattice mismatch between GdFO and STO substrate and as a result, the Debye-Waller factor, an index of disorder in the local structure near the Fe-O bond, increases with the GdFO thickness. However, for the GdBCO/GdFO bilayer structure, the Debye-Waller factor decreases as the GdFO thickness increases indicating a diminished disorder by the structural coupling between GdFO and GdBCO. These results indicate that an appropriate thickness of GdFO is required to be utilized as a magnetic buffer layer for the GdBCO superconducting films.

Structural damage detection through longitudinal wave propagation using spectral finite element method

  • Kumar, K. Varun;Saravanan, T. Jothi;Sreekala, R.;Gopalakrishnan, N.;Mini, K.M.
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.161-183
    • /
    • 2017
  • This paper investigates the damage identification of the concrete pile element through axial wave propagation technique using computational and experimental studies. Now-a-days, concrete pile foundations are often common in all engineering structures and their safety is significant for preventing the failure. Damage detection and estimation in a sub-structure is challenging as the visual picture of the sub-structure and its condition is not well known and the state of the structure or foundation can be inferred only through its static and dynamic response. The concept of wave propagation involves dynamic impedance and whenever a wave encounters a changing impedance (due to loss of stiffness), a reflecting wave is generated with the total strain energy forked as reflected as well as refracted portions. Among many frequency domain methods, the Spectral Finite Element method (SFEM) has been found suitable for analysis of wave propagation in real engineering structures as the formulation is based on dynamic equilibrium under harmonic steady state excitation. The feasibility of the axial wave propagation technique is studied through numerical simulations using Elementary rod theory and higher order Love rod theory under SFEM and ABAQUS dynamic explicit analysis with experimental validation exercise. Towards simulating the damage scenario in a pile element, dis-continuity (impedance mismatch) is induced by varying its cross-sectional area along its length. Both experimental and computational investigations are performed under pulse-echo and pitch-catch configuration methods. Analytical and experimental results are in good agreement.

Thermal Stresses in a Bimaterial Axisymmetric Disk-Approximate and Exact Solutions (복합 재료로 구성된 축대칭 원판에서의 열응력)

  • 정철섭;김기석
    • Computational Structural Engineering
    • /
    • v.8 no.1
    • /
    • pp.173-186
    • /
    • 1995
  • It is well known that structures constructed by bonding two or more materials and then subjected to temperature change experience thermal stress. This stress results from thermal expansion mismatch of materials. The present paper derives formulas for the stresses in a bimaterial axisymmetric disk which is subjected to a uniform temperature change. First, an approximate solution following strength-of-materials principles is developed. However, the strength-of-materials solution has difficulty in predicting both the peak value of interfacial stresses and its associated distribution. Next, a solution consistent with the theory of elasticity is developed by way of an eigenfunction expansion approach. The eigenfunction analysis is compared with finite element stress analysis results for a specific numerical example. Finite element analysis results show that the interfacial stresses are adequately predicted by eigenfunction solution. Therefore, the method developed in this paper will be useful in determination of the interfacial stress state.

  • PDF

Change of transmission characteristics of FSSs in hybrid composites due to residual stresses

  • Hwang, In-Han;Chun, Heoung-Jae;Hong, Ik-Pyo;Park, Yong-Bae;Kim, Yoon-Jae
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1501-1510
    • /
    • 2015
  • The frequency selective surface (FSS) embedded hybrid composite materials have been developed to provide excellent mechanical and specific electromagnetic properties. Radar absorbing structures (RASs) are an example material that provides both radar absorbing properties and structural characteristics. The absorbing efficiency of an RAS can be improved using selected materials having special absorptive properties and structural characteristics and can be in the form of multi-layers or have a certain stacking sequence. However, residual stresses occur in FSS embedded composite structures after co-curing due to a mismatch between the coefficients of thermal expansion of the FSS and the composite material. In this study, to develop an RAS, the thermal residual stresses of FSS embedded composite structures were analyzed using finite element analysis, considering the effect of stacking sequence of composite laminates with square loop (SL) and double square loop (DSL) FSS patterns. The FSS radar absorbing efficiency was measured in the K-band frequency range of 21.6 GHz. Residual stress leads to a change in the deformation of the FSS pattern. Using these results, the effect of transmission characteristics with respect to the deformation on FSS pattern was analyzed using an FSS Simulator.

Deformation estimation of truss bridges using two-stage optimization from cameras

  • Jau-Yu Chou;Chia-Ming Chang
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.409-419
    • /
    • 2023
  • Structural integrity can be accessed from dynamic deformations of structures. Moreover, dynamic deformations can be acquired from non-contact sensors such as video cameras. Kanade-Lucas-Tomasi (KLT) algorithm is one of the commonly used methods for motion tracking. However, averaging throughout the extracted features would induce bias in the measurement. In addition, pixel-wise measurements can be converted to physical units through camera intrinsic. Still, the depth information is unreachable without prior knowledge of the space information. The assigned homogeneous coordinates would then mismatch manually selected feature points, resulting in measurement errors during coordinate transformation. In this study, a two-stage optimization method for video-based measurements is proposed. The manually selected feature points are first optimized by minimizing the errors compared with the homogeneous coordinate. Then, the optimized points are utilized for the KLT algorithm to extract displacements through inverse projection. Two additional criteria are employed to eliminate outliers from KLT, resulting in more reliable displacement responses. The second-stage optimization subsequently fine-tunes the geometry of the selected coordinates. The optimization process also considers the number of interpolation points at different depths of an image to reduce the effect of out-of-plane motions. As a result, the proposed method is numerically investigated by using a truss bridge as a physics-based graphic model (PBGM) to extract high-accuracy displacements from recorded videos under various capturing angles and structural conditions.

Wage Determination Process and Income Disparity in Korean Metropolitan Cities (우리나라 광역대도시 지역노동시장의 임금결정과정과 소득격차)

  • 이원호
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.187-207
    • /
    • 2002
  • This study investigates the wage determination process of regional labor markets in order to understand the regional dimension of labor market processes in Korean metropolitan cities. Since the financial crisis in late 1997, the interplay between labor market restructuring such as unemployment and skill polarization and income disparity has been shaped by the labor market process in the metropolitan cities. This is also closely related to the fact that both industrial restructuring and expanding information technologies in the metropolitan region have reshaped the labor demand structure and finally resulted in structural unemployment due to skill mismatch and spatial mismatch and wage inequality across different occupations. In addition, since wage determination process clearly has a regional dimension, wage determination and its influence on income profile in a certain regional labor market need to be understood by investigating its labor market characteristics including labor supply and demand structure, industrial changes, changing unemployment, etc. This is why labor market policy as a regional policy needs to be redefined and it can be much enhanced by geographical investigation on regional labor market.

  • PDF

Critical Cleaning Requirements for Flip Chip Packages

  • Bixenman, Mike;Miller, Erik
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.43-55
    • /
    • 2000
  • In traditional electronic packages the die and the substrate are interconnected with fine wire. Wire bonding technology is limited to bond pads around the peripheral of the die. As the demand for I/O increases, there will be limitations with wire bonding technology. Flip chip technology eliminates the need for wire bonding by redistributing the bond pads over the entire surface of the die. Instead of wires, the die is attached to the substrate utilizing a direct solder connection. Although several steps and processes are eliminated when utilizing flip chip technology, there are several new problems that must be overcome. The main issue is the mismatch in the coefficient of thermal expansion (CTE) of the silicon die and the substrate. This mismatch will cause premature solder Joint failure. This issue can be compensated for by the use of an underfill material between the die and the substrate. Underfill helps to extend the working life of the device by providing environmental protection and structural integrity. Flux residues may interfere with the flow of underfill encapsulants causing gross solder voids and premature failure of the solder connection. Furthermore, flux residues may chemically react with the underfill polymer causing a change in its mechanical and thermal properties. As flip chip packages decrease in size, cleaning becomes more challenging. While package size continues to decrease, the total number of 1/0 continue to increase. As the I/O increases, the array density of the package increases and as the array density increases, the pitch decreases. If the pitch is decreasing, the standoff is also decreasing. This paper will present the keys to successful flip chip cleaning processes. Process parameters such as time, temperature, solvency, and impingement energy required for successful cleaning will be addressed. Flip chip packages will be cleaned and subjected to JEDEC level 3 testing, followed by accelerated stress testing. The devices will then be analyzed using acoustic microscopy and the results and conclusions reported.

  • PDF

Structural Study of Epitaxial NiSi on Si (001) Substrate by Using Density Functional Theory (DFT) (DFT를 이용한 Si (001) 기판의 에피택시 NiSi 구조 연구)

  • Kim, Dae-Hee;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.4
    • /
    • pp.65-68
    • /
    • 2007
  • An epitaxial NiSi structure on Si (001) substrate was studied by using density functional theory (DFT). Orhorhombic and B2-NiSi structures were compared first. B2 structure was further considered as it has same crystal structure as Si and the lattice mismatch between B2 and Si is small, compared to orthorhombic-NiSi. The lattice parameters of x- and y-direction in B2-NiSi structure were modified to match with those in Si (001). The size reduction of the lattice parameter of B2-NiSi to match with that of Si increased the lattice parameter of z-direction by 10.5%. Therefore, we propose that an optimum structure of NiSi for epitaxial growth on Si (001) is a tetragonal structure.

  • PDF

Three-dimensional free vibration analysis of functionally graded fiber reinforced cylindrical panels using differential quadrature method

  • Yas, M.H.;Aragh, B. Sobhani;Heshmati, M.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.529-542
    • /
    • 2011
  • Three dimensional solutions for free vibrations analysis of functionally graded fiber reinforced cylindrical panel are presented, using differential quadrature method (DQM). The orthotropic panel is simply supported at the edges and is assumed to have an arbitrary variation of reinforcement volume fraction in the radial direction. Suitable displacement functions that identically satisfy the simply supported boundary condition are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by differential quadrature method to obtain natural frequencies. The main contribution of this work is presenting useful results for continuous grading of fiber reinforcement in the thickness direction of a cylindrical panel and comparison with similar discrete laminate composite ones. Results indicate that significant improvement is found in natural frequency of a functionally graded fiber reinforced composite panel due to the reduction in spatial mismatch of material properties.

Growth of Zn-chalcogenide epilayers by hot-wall epitaxy and their structural properties (Hot-wall epitaxy에 의한 Zn-chalcogenide 에피층의 성장 및 구조적 특성)

  • 유영문;남성운;이종광;오병성;이기선;최용대;이종원
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4A
    • /
    • pp.470-475
    • /
    • 1999
  • ZnS and ZnTe epilayers were grown on GaAs(100) GaP(100) substrates by hot-wall eitaxy. X-ray diffraction revealed that the epilayers have zinc-blende structure and were grown in (100) direction. The small values of the full width at half maximum (FWHM) of double crystal rocking curve (DCRC) showed high quality of the epilayers. From the thickness dependence of the FWHM of DCRC, the strain remaining in films is found to be due to the thermal expansion difference as well as due to the lattice mismatch.

  • PDF