• Title/Summary/Keyword: Structural Mechanics Analysis

Search Result 2,938, Processing Time 0.023 seconds

An effective solution of electro-thermo-structural problem of uni-axially graded material

  • Murin, J.;Kutis, V.;Masny, M.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.695-713
    • /
    • 2008
  • The aim of this contribution is to present a new link/beam finite element suitable for electrothermo-structural analysis of uni-axially graded materials. Continuous polynomial variation of geometry and material properties will be considered. The element matrix and relations for solution of Joule's heat (and its distribution to the element nodes) have been established in the sense of a sequence method of a coupled problem solution. The expression for the solution of nodal forces caused by a continuously distributed temperature field has also been derived. The theoretical part of this contribution is completed by numerical validation, which proves the high accuracy and effectiveness of the proposed element. The results of the performed experiments are compared with those obtained using the more expensive multiphysical link element and solid element of the FEM program Ansys. The proposed finite element could be used not only in the multiphysical analysis of the current paths and actuators but also in analysis of other 1D construction parts made of composite or uni-axially graded materials.

A non-dimensional theoretical approach to model high-velocity impact on thick woven plates

  • Alonso, L.;Garcia-Gonzalez, D.;Navarro, C.;Garcia-Castillo, S.K.
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.717-737
    • /
    • 2021
  • A theoretical energy-based model to capture the mechanical response of thick woven composite laminates, which are used in such applications as maritime or aerospace, to high-velocity impact was developed. The dependences of the impact phenomenon on material and geometrical parameters were analysed making use of the Vaschy-Buckingham Theorem to provide a non-dimensional framework. The model was divided in three different stages splitting the physical interpretation of the perforation process: a first where different dissipative mechanisms such as compression or shear plugging were considered, a second where a transference of linear momentum was assumed and a third where only friction took place. The model was validated against experimental data along with a 3D finite element model. The numerical simulations were used to validate some of the new hypotheses assumed in the theoretical model to provide a more accurate explanation of the phenomena taking place during a high-velocity impact.

Structural damage identification using incomplete static displacement measurement

  • Lu, Z.R.;Zhu, J.J.;Ou, Y.J.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.251-257
    • /
    • 2017
  • A local damage identification method using measured structural static displacement is proposed in this study. Based on the residual force vector deduced from the static equilibrium equation, residual strain energy (RSE) is introduced, which can localize the damage in the element level. In the case of all the nodal displacements are used, the RSE can localize the true location of damage, while incomplete displacement measurements are used, some suspicious damaged elements can be found. A model updating method based on static displacement response sensitivity analysis is further utilized for accurate identification of damage location and extent. The proposed method is verified by two numerical examples. The results indicate that the proposed method is efficient for damage identification. The advantage of the proposed method is that only limited static displacement measurements are needed in the identification, thus it is easy for engineering application.

Computational multiscale analysis in civil engineering

  • Mang, H.A.;Aigner, E.;Eberhardsteiner, J.;Hackspiel, C.;Hellmich, C.;Hofstetter, K.;Lackner, R.;Pichler, B.;Scheiner, S.;Sturzenbecher, R.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.2
    • /
    • pp.109-128
    • /
    • 2009
  • Multiscale analysis is a stepwise procedure to obtain macro-scale material laws, directly amenable to structural analysis, based on information from finer scales. An essential ingredient of this mode of analysis is mathematical homogenization of heterogeneous materials at these scales. The purpose of this paper is to demonstrate the potential of multiscale analysis in civil engineering. The materials considered in this work are wood, shotcrete, and asphalt.

Structural evaluation of an existing steel natatorium by FEM and dynamic measurement

  • Liu, Wei;Gao, Wei-Cheng;Sun, Yi;Yu, Yan-Lei
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.507-526
    • /
    • 2009
  • Based on numerical and experimental methods, a systematic structural evaluation of a steel natatorium in service was carried out in detail in this paper. Planning of inspection tasks was proposed firstly according to some national codes in China in order to obtain the economic and reliable results. The field visual inspections and static computation were conducted in turn under in-service environmental conditions. Further a three-dimensional finite element model was developed according to its factual geometry properties obtained from the field inspection. An analytical modal analysis was performed to provide the analytical modal properties. The field vibration tests on the natatorium were conducted and then two different system identification methods were used to obtain the dynamic characteristics of the natatorium. A good correlation was achieved in results obtained from the two system identification methods and the finite element method (FEM). The numerical and experimental results demonstrated that the main structure of the natatorium in its present status is safe and it still satisfies the demand of the national codes in China. But the roof system such as purlines and skeletons must be removed and rebuilt completely. Moreover the system identification results showed that field vibration test is sufficient to identify the reliable dynamic properties of the natatorium. The constructive suggestion on structural evaluation of the natatorium is that periodic assessment work must be maintained to ensure the natatorium's safety in the future.

Earthquake response analysis of series reactor

  • Bai, Changqing;Xu, Qingyu;Zhang, Hongyan
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.621-634
    • /
    • 2005
  • A direct transfer substructure method is presented in this paper for analyzing the dynamic characteristics and the seismic random responses of a series reactor. This method combines the concept of FRF (frequency response function) and the transfer matrix algorithm with the substructure approach. The inner degrees of freedom of each substructure are eliminated in the process of reconstruction and the computation cost is reduced greatly. With the convenient solution procedure, the dynamic characteristics analysis of the structure is valid and efficient. Associated with the pseudo excitation algorithm, the direct transfer substructure method is applied to investigating the seismic random responses of the series reactor. The numerical results demonstrate that the presented method is efficient and practicable in engineering. Finally, a precise time integration method is employed in performing a time-history analysis on the series reactor under El Centro and Taft earthquake waves.

Determination of the load carrying capacity of closed steel supports used in underground construction and mining

  • Lenka, Koubova;Petr, Janas;Karel, Janas;Martin, Krejsa
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.715-728
    • /
    • 2022
  • Closed steel supports of different shapes are used in mining and underground constructions. The supports are prefabricated from rolled, usually robust, steel profiles. The load carrying capacity of a support is considerably influenced by the active loading and passive forces. The passive forces are induced by interactions between the support and the surrounding rock mass. The analysis herein comprises three parts: The first part consists of structural geometry processing. The second part involves finding the numerical solution of a statically indeterminate structure for a specified load. The third part is calculation of the load carrying capacity and the components of internal forces and deformations. For this, the force method and numerical integration are used. The Winkler model is applied when the support interacts with the surrounding environment. The load carrying capacity is limited by the slip resistance of the connected parts and it is limited by reaching the ultimate state of the profile. This paper serves as a comprehensive reference for the determination of the load carrying capacity of closed steel supports and includes stepwise derivations of the governing formulas.

Stochastic response analysis of visco-elastic slit shear walls

  • Kwan, A.K.H.;Tian, Q.L.;Cheung, Y.K.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.377-394
    • /
    • 1998
  • Slit shear walls an reinforced concrete shear wall structures with purposely built-in vertical slits. If the slits are inserted with visco-elastic damping materials, the shear walls will become viscoelastic sandwich beams. When adequately designed, this kind of structures can be quite effective in resisting earthquake loads. Herein, a simple analysis method is developed for the evaluation of the stochastic responses of visco-elastic slit shear walls. In the proposed method, the stiffness and mass matrices are derived by using Rayleigh-Ritz method, and the responses of the structures are calculated by means of complex modal analysis. Apart from slit shear walls, this analysis method is also applicable to coupled shear walls and cantilevered sandwich beams. Numerical examples are presented and the results clearly show that the seismic responses of shear wall structures can be substantially reduced by incorporating vertical slits into the walls and inserting visco-elastic damping materials into the slits.