• Title/Summary/Keyword: Structural Materials

Search Result 5,896, Processing Time 0.04 seconds

Effect of Ethanol Fractionation of Lignin on the Physicochemical Properties of Lignin-Based Polyurethane Film

  • Sungwook WON;Junsik BANG;Sang-Woo PARK;Jungkyu KIM;Minjung JUNG;Seungoh JUNG;Heecheol YUN;Hwanmyeong YEO;In-Gyu CHOI;Hyo Won KWAK
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.221-233
    • /
    • 2024
  • Lignin, a prominent constituent of woody biomass, is abundant in nature, cost-effective, and contains various functional groups, including hydroxyl groups. Owing to these characteristics, they have the potential to replace petroleum-based polyols in the polyurethane industry, offering a solution to environmental problems linked to resource depletion and CO2 emissions. However, the structural complexity and low reactivity of lignin present challenges for its direct application in polyurethane materials. In this study, Kraft lignin (KL), a representative technical lignin, was fractionated with ethanol, an eco-friendly solvent, and mixed with conventional polyols in varying proportions to produce polyurethane films. The results of ethanol fractionation showed that the polydispersity of ethanol-soluble lignin (ESL) decreased from 3.71 to 2.72 and the hydroxyl content of ESL increased from 4.20 mmol/g to 5.49 mmol/g. Consequently, the polyurethane prepared by adding ESL was superior to the KL-based film, exhibiting improved miscibility with petrochemical-based polyols and reactivity with isocyanate groups. Consequently, the films using ESL as the polyol exhibited reduced shrinkage and a more uniform structure. Optical microscope and scanning electron microscope observations confirmed that lignin aggregation was lower in polyurethane with ESL than in that with KL. When the hydrophobicity of the samples was measured using the water contact angle, the addition of ESL resulted in higher hydrophobicity. In addition, as the amount of ESL added increased, an increase of 7.4% in the residual char was observed, and a 4.04% increase in Tmax the thermal stability of the produced polyurethane was effectively improved.

Effect of the initial imperfection on the response of the stainless steel shell structures

  • Ali Ihsan Celik;Ozer Zeybek;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.705-720
    • /
    • 2024
  • Analyzing the collapse behavior of thin-walled steel structures holds significant importance in ensuring their safety and longevity. Geometric imperfections present on the surface of metal materials can diminish both the durability and mechanical integrity of steel shells. These imperfections, encompassing local geometric irregularities and deformations such as holes, cavities, notches, and cracks localized in specific regions of the shell surface, play a pivotal role in the assessment. They can induce stress concentration within the structure, thereby influencing its susceptibility to buckling. The intricate relationship between the buckling behavior of these structures and such imperfections is multifaceted, contingent upon a variety of factors. The buckling analysis of thin-walled steel shell structures, similar to other steel structures, commonly involves the determination of crucial material properties, including elastic modulus, shear modulus, tensile strength, and fracture toughness. An established method involves the emulation of distributed geometric imperfections, utilizing real test specimen data as a basis. This approach allows for the accurate representation and assessment of the diversity and distribution of imperfections encountered in real-world scenarios. Utilizing defect data obtained from actual test samples enhances the model's realism and applicability. The sizes and configurations of these defects are employed as inputs in the modeling process, aiding in the prediction of structural behavior. It's worth noting that there is a dearth of experimental studies addressing the influence of geometric defects on the buckling behavior of cylindrical steel shells. In this particular study, samples featuring geometric imperfections were subjected to experimental buckling tests. These same samples were also modeled using Finite Element Analysis (FEM), with results corroborating the experimental findings. Furthermore, the initial geometrical imperfections were measured using digital image correlation (DIC) techniques. In this way, the response of the test specimens can be estimated accurately by applying the initial imperfections to FE models. After validation of the test results with FEA, a numerical parametric study was conducted to develop more generalized design recommendations for the stainless-steel shell structures with the initial geometric imperfection. While the load-carrying capacity of samples with perfect surfaces was up to 140 kN, the load-carrying capacity of samples with 4 mm defects was around 130 kN. Likewise, while the load carrying capacity of samples with 10 mm defects was around 125 kN, the load carrying capacity of samples with 14 mm defects was measured around 120 kN.

Comparison of Normative Percentiles of Brain Volume Obtained from NeuroQuant vs. DeepBrain in the Korean Population: Correlation with Cranial Shape (한국 인구에서 NeuroQuant와 DeepBrain에서 측정된 뇌 용적의 정상규준 백분위수 비교: 두개골 형태와의 연관성)

  • Mi Hyun Yang;Eun Hee Kim;Eun Sun Choi;Hongseok Ko
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.5
    • /
    • pp.1080-1090
    • /
    • 2023
  • Purpose This study aimed to compare the volume and normative percentiles of brain volumetry in the Korean population using quantitative brain volumetric MRI analysis tools NeuroQuant (NQ) and DeepBrain (DB), and to evaluate whether the differences in the normative percentiles of brain volumetry between the two tools is related to cranial shape. Materials and Methods In this retrospective study, we analyzed the brain volume reports obtained from NQ and DB in 163 participants without gross structural brain abnormalities. We measured threedimensional diameters to evaluate the cranial shape on T1-weighted images. Statistical analyses were performed using intra-class correlation coefficients and linear correlations. Results The mean normative percentiles of the thalamus (90.8 vs. 63.3 percentile), putamen (90.0 vs. 60.0 percentile), and parietal lobe (80.1 vs. 74.1 percentile) were larger in the NQ group than in the DB group, whereas that of the occipital lobe (18.4 vs. 68.5 percentile) was smaller in the NQ group than in the DB group. We found a significant correlation between the mean normative percentiles obtained from the NQ and cranial shape: the mean normative percentile of the occipital lobe increased with the anteroposterior diameter and decreased with the craniocaudal diameter. Conclusion The mean normative percentiles obtained from NQ and DB differed significantly for many brain regions, and these differences may be related to cranial shape.

Molecular Design of Water-dispersed Polymer Binder with Network Structure for Improved Structural Stability of Si-based Anode (실리콘 기반 음극의 구조적 안전성 향상을 위한 가교 구조를 가지는 수분산 고분자 바인더의 분자 구조 설계)

  • Eun Young Lim;Eunsol Lee;Jin Hong Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.309-315
    • /
    • 2024
  • Silicon and carbon composite (SiC) is considered one of the most promising anode materials for the commercialization of Si-based anodes, as it could simultaneously satisfy the high theoretical capacity of Si and the high electronic conductivity of carbon. However, SiC active material undergoes repeated volumetric changes during charge/discharge processes, leading to continuous electrolyte decomposition and capacity fading, which is still considered an issue that needs to be addressed. To solve this issue, we suggest a 4,4'-Methylenebis(cyclohexyl isocyanate) (H12MDI)-based waterborne polyurethane binder (HPUD), which forms a 3D network structure through thermal cross-linking reaction. The cross-linked HPUD (denoted as CHPU) was prepared using an epoxy ring-opening reaction of the cross-linker, triglycidyl isocyanurate (TGIC), via simple thermal treatment during the SiC anode drying process. The SiC anode with the CHPU binder, which exhibited superior mechanical and adhesion properties, not only demonstrated excellent rate and cycling performance but also alleviated the volume expansion of the SiC anode. This work implies that eco-friendly binders with cross-linked structures could be utilized for various Si-based anodes.

Study on the Radial Variation of Structural Element in the Diffuse-Porous Woods (주요산공재(主要散孔材) 구성요소(構成要素)의 방사방향(放射方向) 변동(變動)에 관한 연구(硏究))

  • Han, Cheol-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.26-52
    • /
    • 1987
  • Among the diffuse-porous woods which arc dominant in Korea and used as construction materials due to their wood quality, ten species of six genus involving seven species of three genus in Betulaceae were studied on the radial variation of structural demenb. The species studied were Betula platyphylla var. japonica, B. ermanii, B. davurica, B. scstata, B. schmidtii, Carpinus laxifora, Alnus japonica, Prunus sargentii. Acer mono and Diospyros kaki. Wood fiber, vessel elements and ray increased rapidly in size from pith to a certain annual ring. After then the radial variation in size of the main structural elements seemed to be divided into three types; levelled off curve pattern indicating constant size(type I), continuously increasing curve pattern showing ever increase in size (type II) and parabolic curve pattern showing the gradual decrease after the maximum (type III), but the variation types by structural dements were different even in the same species. Based on the results from this study, it appears to be reasonable to consider the stabilized age of wood fiber, vessel elements and ray rather than considering wood fiber length in distinguishing mature woods from juvenile woods.

  • PDF

Efficient Red-Color Emission of InGaN/GaN Double Hetero-Structure Formed on Nano-Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Gong, Su-Hyeon;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.174-175
    • /
    • 2012
  • (In, Ga) N-based III-nitride semiconductor materials have been viewed as the most promising materials for the applications of blue and green light emitting devices such as light-emitting diodes (LEDs) and laser diodes. Although the InGaN alloy can have wide range of visible wavelength by changing the In composition, it is very hard to grow high quality epilayers of In-rich InGaN because of the thermal instability as well as the large lattice and thermal mismatches. In order to avoid phase separation of InGaN, various kinds of structures of InGaN have been studied. If high-quality In-rich InGaN/GaN multiple quantum well (MQW) structures are available, it is expected to achieve highly efficient phosphor-free white LEDs. In this study, we proposed a novel InGaN double hetero-structure grown on GaN nano-pyramids to generate broad-band red-color emission with high quantum efficiency. In this work, we systematically studied the optical properties of the InGaN pyramid structures. The nano-sized hexagonal pyramid structures were grown on the n-type GaN template by metalorganic chemical vapor deposition. SiNx mask was formed on the n-type GaN template with uniformly patterned circle pattern by laser holography. GaN pyramid structures were selectively grown on the opening area of mask by lateral over-growth followed by growth of InGaN/GaN double hetero-structure. The bird's eye-view scanning electron microscope (SEM) image shows that uniform hexagonal pyramid structures are well arranged. We showed that the pyramid structures have high crystal quality and the thickness of InGaN is varied along the height of pyramids via transmission electron microscope. Because the InGaN/GaN double hetero-structure was grown on the nano-pyramid GaN and on the planar GaN, simultaneously, we investigated the comparative study of the optical properties. Photoluminescence (PL) spectra of nano-pyramid sample and planar sample measured at 10 K. Although the growth condition were exactly the same for two samples, the nano-pyramid sample have much lower energy emission centered at 615 nm, compared to 438 nm for planar sample. Moreover, nano-pyramid sample shows broad-band spectrum, which is originate from structural properties of nano-pyramid structure. To study thermal activation energy and potential fluctuation, we measured PL with changing temperature from 10 K to 300 K. We also measured PL with changing the excitation power from 48 ${\mu}W$ to 48 mW. We can discriminate the origin of the broad-band spectra from the defect-related yellow luminescence of GaN by carrying out PL excitation experiments. The nano-pyramid structure provided highly efficient broad-band red-color emission for the future applications of phosphor-free white LEDs.

  • PDF

A Study on the Application of RTLS Technology for the Automation of Spray-Applied Fire Resistive Covering Work (뿜칠내화피복 작업 자동화시스템을 위한 RTLS 기술 적용에 관한 연구)

  • Kim, Kyoon-Tai
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.79-86
    • /
    • 2009
  • In a steel structure, spray-applied fire resistive materials are crucial in preventing structural strength from being weakened in the event of a fire. The quality control of such materials, however, is difficult for manual workers, who can frequently be in short supply. These skilled workers are also very likely to be exposed to environmental hazards. Problems with construction work such as this, which are specifically the difficulty of achieving quality control and the dangerous nature of the work itself, can be solved to some degree by the introduction of automated equipment. It is, however, very difficult to automate the work process, from operation to the selection of a location for the equipment, as the environment of a construction site has not yet been structured to accommodate automation. This is a fundamental study on the possibility of the automation of spray-applied fire resistive coating work. In this study, the linkability of the cutting-edge RTLS to an automation system is reviewed, and a scenario for the automation of spray-applied fire resistive coating work and system composition is presented. The system suggested in this study is still in a conceptual stage, and as such, there are many restrictions still to be resolved. Despite this fact, automation is expected to have good effectiveness in terms of preventing fire from spreading by maintaining a certain level of strength at a high temperature when a fire occurs, as it maintains the thickness of the fire-resistive coating at a specified level, and secures the integrity of the coating with the steel structure, thereby enhancing the fire-resistive performance. It also expected that if future research is conducted in this area in relation to a cutting-edge monitoring TRS, such as the ubiquitous sensor network (USN) and/or building information model (BIM), it will contribute to raising the level of construction automation in Korea, reducing costs through the systematic and efficient management of construction resources, shortening construction periods, and implementing more precise construction

DEVELOPMENT OF BIOCOMPATIBLE DRESSING MATERIAL MADE OF COLLAGEN AND AMNIOTIC MEMBRANE AND WOUND HEALING EXPERIMENT IN RAT (양막과 콜라겐을 이용한 생체 적합 드레싱 소재 개발 및 백서 창상치유 실험)

  • Ahn, Kang-Min;Lee, Ji-Ho;Lee, Ui-Lyong;Lee, Jong-Ho;Lee, Jong-Won;Kim, Sung-Po;Yang, Eun-Kyung;Kim, Ki-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.3
    • /
    • pp.189-199
    • /
    • 2006
  • Purpose of study: Partial thickness skin graft is the golden standard regimen for full-thickness skin defect caused by burn or trauma. However, in case of extensive burns of more than 50% of total body surface area, the donor site is not sufficient to cover all defects. As a second choice, allograft, xenograft and synthetic materials have been used to treat skin defect. Among them the amniotic membrane(AM) was used as a biological dressing for centuries because of its potential for wound healing. In this study, quantification of EGF in AM and effect of AM-collagen complex on full thickness skin defects was examined. Materials & Methods: The concentration of EGF in fresh, deep frozen and freeze-dried AM was evaluated by ELISA. EGF-R immunostaining was performed in freeze-dried AM. SD rats weighing 250${\sim}$300g was used for wound healing experiment. Three full thickness skin defects(28mm diameter) were made on dorsal surface of SD rat. The control group was covered by Vaselin gauze and AM-collagen complex and $Terudermis^{(R)}$. was grafted in two other defects. Healing area, Cinamon's score were evaluated before biopsy. Grafted sites were retrieved at 3 days, 1 week, 2 weeks and 4 weeks after operation. H & E and Factor VIII immunohistochemical stain was performed to evaluate the microscopic adhesion and structural integrity and microvessel formation. Results: 1. EGF concentration of fresh, deep frozen and freeze-dried AM showed similar level and EGF-R was stained in epithelial layer of freeze-dried AM. 2. At 4 weeks after grafting, the healing area of AM-collagen and Terudermis group was 99.29${\pm}$0.71% and 99.19${\pm}$0.77 of original size. However, that of control group was 24.88${\pm}$2.90. 3. The Cinamon's score of AM-Collagen and $Terudermis^{(R)}$. group at 4 weeks was 15.6${\pm}$1.26 and 14.6${\pm}$3.13 and that of control group was 3.7${\pm}$0.95. Significant difference was observed among control and experimental groups(p<0.05). 4. Histologic examination revealed that AM protected leukocyte infiltration and epithelial migration was nearly completed at 4 weeks. $Terudermis^{(R)}$. group showed mild neutrophil infiltration until 2 weeks and completion of epithelization at 4 weeks. Control group showed massive leukocyte infiltration until 4 weeks. 5. Microvessels were increased sharply at 1 week and control group at 1 and 4 week showed significant differences with $Terudermis^{(R)}$. group of same interval(p<0.05) but no differences were found with AM group(p<0.05). Conclusion: EGF and EGF-R were well preserved in freeze-dried AM. AM attached to collagen acted as excellent biologic dressing which had similar effect with $Terudermis^{(R)}$. AM showed anti-inflammatory action and healing was completed at 4 weeks after full-thickness skin defect.

Effect of Reperfusion after 20 min Ligation of the Left Coronary Artery in Open-chest Bovine Heart: An Ultrastructural Study (재관류가 허혈 심근세포의 미세구조에 미치는 영향 : 재관류 손상에 관한 연구)

  • 이종욱;조대윤;손동섭;양기민;라봉진;김호덕
    • Journal of Chest Surgery
    • /
    • v.31 no.8
    • /
    • pp.739-748
    • /
    • 1998
  • Background: It has been well documented that transient occlusion of the coronary artery causes myocardial ischemia and finally cell death when ischemia is sustained for more than 20 minutes. Extensive studies have revealed that ischemic myocardium cannot recover without reperfusion by adequate restoration of blood flow, however, reperfusion can cause long-lasting cardiac dysfunction and aggravation of structural damage. The author therefore attempted to examine the effect of postischemic reperfusion on myocardial ultrastructure and to determine the rationales for recanalization therapy to salvage ischemic myocardium. Materials and methods: Young Holstein-Friesian cows(130∼140 Kg body weight; n=40) of both sexes, maintained with nutritionally balanced diet and under constant conditions, were used. The left anterior descending coronary artery(LAD) was occluded by ligation with 4-0 silk snare for 20 minutes and recanalized by release of the ligation under continuous intravenous drip anesthesia with sodium pentobarbital(0.15 mg/Kg/min). Drill biopsies of the risk area (antero-lateral wall) were performed at just on reperfusion(5 minutes), 1-, 2-, 3-, 6-, 12-hours after recanalization, and at 1-hour assist(only with mechanical respiration and fluid replacement) after 12-hour recanalization. The materials were subdivided into subepicardial and subendocardial tissues. Tissue samples were examined with a transmission electron microscope (Philips EM 300) at the accelerating voltage of 60 KeV. Results: After a 20-minute ligation of the LAD, myocytes showed slight to moderate degree of ultrastructural changes including subsarcolemmal bleb formation, loss of nuclear matrix, clumping of chromatin and margination, mitochondrial destruction, and contracture of sarcomeres. However, microvascular structures were relatively well preserved. After 1-hour reperfusion, nuclear and mitochondrial matrices reappeared and intravascular plugging by polymorphonuclear leukocytes or platelets was observed. However, nucleoli and intramitochondrial granules reappeared within 3 hours of reperfusion and a large number of myocytes were recovered progressively within 6 hours of reperfusion. Recovery was apparent in the subepicardial myocytes and there were no distinct changes in the ultrastructure except narrowed lumen of the microvessels in the later period of reperfusion. Conclusions: It is likely that the ischemic myocardium could not be salvaged without adequate restoration of coronary flow and that the microvasculature is more resistant to reversible period of ischemia than subendocardium and subepicardium. Therefore, thrombolysis and/or angioplasty may be a rational method of therapy for coronarogenic myocardial ischemia. However, it may take a relatively longer period of time to recover from ischemic insult and reperfusion injury should be considered.

  • PDF

Structural Identification of Antibiotics from Pseudomonas sp. RRj 228, a Antifungal Activity of Collectotrichum acutatum Causing Anthracnose on Pepper (Pseudomonas sp. RRj 228이 분비하는 항균물질의 동정과 고추탄저균 C. acutatum에 대한 항균활성)

  • Jeon, Sang-Yoon;Kim, Yong-Gyun;Lee, Sang-Mong;Son, Hong-Joo;Park, Hyean-Cheal;Kim, Sun-Tae;Park, Ki-Do;Kang, Ui-Gum;Kim, Keun-Ki
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1254-1260
    • /
    • 2010
  • Microorganisms near the plant rhizosphere usually inhabit the surface or the inside of the plant roots and have a direct effect on plant growth by secreting plant growth promoters or antagonistic materials which protect the root zone system from various pathogens. This study was carried out to identify and isolate the antagonistic materials after isolation of microorganisms showing high antagonistic activities, in hopes of contributing to the development of sustainable agriculture and the preservation of agricultural environments. A number of antagonistic bacteria were isolated from paddy soil. Among isolates, RRj 228 showed plant growth promotion and antagonistic activity. RRj 228 was identified as Pseudomonas sp. according to the results of physiological properties and genetic methods. On the basis of the results of anti-fungal spectrum against several pathogens by RRj 228, the antagonistic effect of the isolate against Botrytis cinerea, Pythium ultimum, Phytopthola capsici, and Rhizoctonia solani, especially against red-pepper anthracnose caused by Colletotrichum acutatum, was remarkable. The experiment evaluating the biological control effect by RRj 228 revealed that the $ED_{50}$ value by the RRj 228 culture against C. acutatum, R. solani and P. ultimum were 0.14 mg/ml, 0.16 mg/ml and 0.29 mg/ml, respectively. An antagonistic substance was isolated and purified by several chromatographies from the RRj 228 culture. The $^1H$ and $^{13}C$ assignment of the antagonistic substance was achieved from two-dimensional $^1H-^1H$ COSY, HMQC, and HMBC. Finally, the antagonistic substance was identified as Phenazine-1-carboxylic acid ($C_{13}H_8N_2O_2$, M.W.=224).