• Title/Summary/Keyword: Structural Magnetic Resonance Imaging

Search Result 101, Processing Time 0.027 seconds

Are there network differences between the ipsilateral and contralateral hemispheres of pain in patients with episodic migraine without aura?

  • Junseok Jang;Sungyeong Ryu;Dong Ah Lee;Kang Min Park
    • Annals of Clinical Neurophysiology
    • /
    • v.25 no.2
    • /
    • pp.93-102
    • /
    • 2023
  • Background: We aimed to identify any differences in the structural covariance network based on structural volume and those in the functional network based on cerebral blood flow between the ipsilateral and contralateral hemispheres of pain in patients with episodic migraine without aura. Methods: We prospectively enrolled 27 patients with migraine without aura, all of whom had unilateral migraine pain. We defined the ipsilateral hemisphere as the side of migraine pain. We measured structural volumes on three-dimensional T1-weighted images and cerebral blood flow using arterial spin labeling magnetic resonance imaging. We then analyzed the structural covariance network based on structural volume and the functional network based on cerebral blood flow using graph theory. Results: There were no significant differences in structural volume or cerebral blood flow between the ipsilateral and contralateral hemispheres. However, there were significant differences between the hemispheres in the structural covariance network and the functional network. In the structural covariance network, the betweenness centrality of the thalamus was lower in the ipsilateral hemisphere than in the contralateral hemisphere. In the functional network, the betweenness centrality of the anterior cingulate and paracingulate gyrus was lower in the ipsilateral hemisphere than in the contralateral hemisphere, while that of the opercular part of the inferior frontal gyrus was higher in the former hemisphere. Conclusions: The present findings indicate that there are significant differences in the structural covariance network and the functional network between the ipsilateral and contralateral hemispheres of pain in patients with episodic migraine without aura.

Combined Analysis Using Functional Connectivity of Default Mode Network Based on Independent Component Analysis of Resting State fMRI and Structural Connectivity Using Diffusion Tensor Imaging Tractography (휴지기 기능적 자기공명영상의 독립성분분석기법 기반 내정상태 네트워크 기능 연결성과 확산텐서영상의 트랙토그래피 기법을 이용한 구조 연결성의 통합적 분석)

  • Choi, Hyejeong;Chang, Yongmin
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.684-694
    • /
    • 2021
  • Resting-state Functional Magnetic Resonance Imaging(fMRI) data detects the temporal correlations in Blood Oxygen Level Dependent(BOLD) signal and these temporal correlations are regarded to reflect intrinsic cortical connectivity, which is deactivated during attention demanding, non-self referential tasks, called Default Mode Network(DMN). The relationship between fMRI and anatomical connectivity has not been studied in detail, however, the preceded studies have tried to clarify this relationship using Diffusion Tensor Imaging(DTI) and fMRI. These studies use method that fMRI data assists DTI data or vice versa and it is used as guider to perform DTI tractography on the brain image. In this study, we hypothesized that functional connectivity in resting state would reflect anatomical connectivity of DMN and the combined images include information of fMRI and DTI showed visible connection between brain regions related in DMN. In the previous study, functional connectivity was determined by subjective region of interest method. However, in this study, functional connectivity was determined by objective and advanced method through Independent Component Analysis. There was a stronger connection between Posterior Congulate Cortex(PCC) and PHG(Parahippocampa Gyrus) than Anterior Cingulate Cortex(ACC) and PCC. This technique might be used in several clinical field and will be the basis for future studies related to aging and the brain diseases, which are needed to be translated not only functional connectivity, but structural connectivity.

The Relationship between Harm Avoidance Temperament and Right Frontal and Left Parietal Lobes in Young Adults : A Cortical Thickness Analysis (젊은 성인에서 위험 회피 기질과 우전두엽 및 좌두정엽과의 관련성 : 피질두께 분석)

  • Kim, Da-Jung J.;Lyoo, Young-Wook;Park, Young-Jun;Ahn, Tae Joo;Choi, Byeong Joo;Shin, E-Kyung;Kim, Tae-Suk
    • Korean Journal of Biological Psychiatry
    • /
    • v.17 no.4
    • /
    • pp.203-209
    • /
    • 2010
  • Objectives : Increasing evidence suggests the presence of neurobiological bases for temperamental characteristics in humans. Brain correlates of harm avoidance(HA) have been most extensively studied using functional and structural brain imaging methods due to its potential link with anxiety and depressive disorders. To date, however, we are not aware of any reports that have examined the potential relationship between HA levels and regional cortical thickness. The aim of the current study is to examine the cortical thickness which is associated with HA temperament in healthy young subjects. Methods : Twenty-eight young, healthy individuals(13 men and 15 women, mean age, $29.4{\pm}6.3$ years) were screened for eligibility and administered the Korean version of the Cloninger's Temperament and Character Inventory and underwent high-resolution structural magnetic resonance imaging scanning. Results : HA was associated with cortical thickness in the right superior frontal cortex and in the left parietal cortex, adjusted for age and sex and corrected for multiple comparisons using the permutation testing method. Conclusion : Individual temperamental differences in HA are associated with structural variations in specific areas of the brain. The fact that these brain regions are involved in top-down modulations of subcortical fear reactions adds functional significance to current findings.

Chiari Malformation with Surgically Induced Open Neural Tube Defect in Late Chick Embryos : Characterization by Magnetic Resonance Imaging and Histopathological Analysis

  • In Sung Hwang;Kyung Hyun Kim;Ki Bum Sim
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.4
    • /
    • pp.393-399
    • /
    • 2023
  • Objective : Chiari II malformation (CM II) is still the main cause of severe morbidity and mortality in children with open neural tube defects (ONTDs). The goal of this study was to validate a CM II model in late-stage chick embryos with surgically induced ONTDs. Methods : To make the chick embryo model of ONTD, their neural tubes were opened for a length of 5-6 somites at the thoracic level in Hamburger and Hamilton stage 18 chick embryos (n=150). They were reincubated in ovo up to a total age of 17-21 days. A total of 19 embryos survived and were assigned to either the postoperative day (POD) 14-15 group (n=6) or the POD 17-18 group (n=13). Magnetic resonance imaging (MRI) and histopathologic findings of embryo heads with spinal ONTDs were compared with age-matched normal chick embryos. Results : The chick embryos with ONTDs demonstrated definite and constant structural changes, such as downward displacement of the cerebellum to just above the foramen magnum and narrow and small cerebrospinal fluid spaces in the crowded small posterior fossa. These morphologic features were more prominent in the POD 17-18 group than in the POD 14-15 group. Conclusion : This is the first description of CM II with spinal ONTD in a late-stage chick embryo model with MRI and histopathological analysis. The morphological changes of the posterior fossa in this study mimic those of CM II associated with spinal ONTD in humans. This model will facilitate investigation of the pathogenesis of CM II.

Multiparametric Cardiac Magnetic Resonance Imaging Detects Altered Myocardial Tissue and Function in Heart Transplantation Recipients Monitored for Cardiac Allograft Vasculopathy

  • Muhannad A. Abbasi;Allison M. Blake;Roberto Sarnari;Daniel Lee;Allen S. Anderson;Kambiz Ghafourian;Sadiya S. Khan;Esther E. Vorovich;Jonathan D. Rich;Jane E. Wilcox;Clyde W. Yancy;James C. Carr;Michael Markl
    • Journal of Cardiovascular Imaging
    • /
    • v.30 no.4
    • /
    • pp.263-275
    • /
    • 2022
  • BACKGROUND: Cardiac allograft vasculopathy (CAV) is a complication beyond the first-year post-heart transplantation (HTx). We aimed to test the utility of cardiac magnetic resonance (CMR) to detect functional/structural changes in HTx recipients with CAV. METHODS: Seventy-seven prospectively recruited HTx recipients beyond the first-year post-HTx and 18 healthy controls underwent CMR, including cine imaging of ventricular function and T1- and T2-mapping to assess myocardial tissue changes. Data analysis included quantification of global cardiac function and regional T2, T1 and extracellular volume based on the 16-segment model. International Society for Heart and Lung Transplantation criteria was used to adjudicate CAV grade (0-3) based on coronary angiography. RESULTS: The majority of HTx recipients (73%) presented with CAV (1: n = 42, 2/3: n = 14, 0: n = 21). Global and segmental T2 (49.5 ± 3.4 ms vs 50.6 ± 3.4 ms, p < 0.001;16/16 segments) were significantly elevated in CAV-0 compared to controls. When comparing CAV-2/3 to CAV-1, global and segmental T2 were significantly increased (53.6 ± 3.2 ms vs. 50.6 ± 2.9 ms, p < 0.001; 16/16 segments) and left ventricular ejection fraction was significantly decreased (54 ± 9% vs. 59 ± 9%, p < 0.05). No global, structural, or functional differences were seen between CAV-0 and CAV-1. CONCLUSIONS: Transplanted hearts display functional and structural alteration compared to native hearts, even in those without evidence of macrovasculopathy (CAV-0). In addition, CMR tissue parameters were sensitive to changes in CAV-1 vs. 2/3 (mild vs. moderate/severe). Further studies are warranted to evaluate the diagnostic value of CMR for the detection and classification of CAV.

Recent Progress in MRI Contrast Agent with Ceramic LDH Nanohybrids (세라믹 LDH 나노하이브리드를 이용한 MRI 조영제의 최신 연구동향)

  • Ha, Seongjin;Jin, Wenji;Park, Dae-Hwan
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.269-280
    • /
    • 2019
  • Ceramic layered double hydroxide (LDH) nanohybrids have attracted considerable interest in biomedical science due to their unique structural feature and characteristics in biological condition. Many studies on LDH nanoparticles have been reported in diagnosis applications including magnetic resonance imaging (MRI) contrast agents in order to not only provide better imaging performance through multimodal imaging strategy, but realize therapeutic function which treat cancers in one platform. This review highlights the recent progress in MRI T1 contrast agent, dual modal imaging system, and MRI-guided drug delivery systems ranging from synthetic method and characterization to evaluation in vitro and in vivo based on the ceramic LDH nanohybrids. Future research directions are also suggested for next-generation bio-imaging contrast agent.

A Study on the MEG Imaging (MEG 영상진단 검사에 관한 연구)

  • Kim, Jong-Gyu
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.2
    • /
    • pp.123-128
    • /
    • 2005
  • Magnetoencephalography (MEG) is the measurement of the magnetic fields produced by electrical activity in the brain, usually conducted externally, using extremely sensitive devices such as Superconducting Quantum Interference Device (SQUID). MEG needs complex and expensive measurement settings. Because the magnetic signals emitted by the brain are on the order of a few femtoteslas (1 fT = 10-15T), shielding from external magnetic signals, including the Earth's magnetic field, is necessary. An appropriate magnetically shielded room is very expensive, and constitutes the bulk of the expense of an MEG system. MEG is a relatively new technique that promises good spatial resolution and extremely high temporal resolution, thus complementing other brain activity measurement techniques such as electroencephalography (EEG), positron emission tomography (PET), single-photon emission computed tomography (SPECT) and functional magnetic resonance imaging (fMRI). MEG combines functional information from magnetic field recordings with structural information from MRI. The clinical uses of MEG are in detecting and localizing epileptic form spiking activity in patients with epilepsy, and in localizing eloquent cortex for surgical planning in patients with brain tumors. Magnetoencephalography may be used alone or together with electroencephalography, for the measurement of spontaneous or evoked activity, and for research or clinical purposes.

  • PDF

DEM numerical study on mechanical behaviour of coal with different water distribution models

  • Tan, Lihai;Cai, Xin;Ren, Ting;Yang, Xiaohan;Rui, Yichao
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.523-538
    • /
    • 2021
  • The mechanical behaviour and stability of coal mining engineering underground is significantly affected by ground water. In this study, nuclear magnetic resonance imaging (NMRI) technique was employed to determine the water distribution characteristics in coal specimens during saturation process, based on which the functional rule for water distribution was proposed. Then, using discrete element method (DEM), an innovative numerical modelling method was developed to simulate water-weakening effect on coal behaviour considering moisture content and water distribution. Three water distribution numerical models, namely surface-wetting model, core-wetting model and uniform-wetting model, were established to explore the water distribution influences. The feasibility and validity of the surface-wetting model were further demonstrated by comparing the simulation results with laboratory results. The investigation reveals that coal mechanical properties are affected by both water saturation coefficient and water distribution condition. For all water distribution models, micro-cracks always initiate and nucleate in the water-rich area and thus lead to distinct macro fracture characteristics. With the increase of water saturation coefficient, the failure of coal tends to be less violent with less cracks and ejected fragments. In addition, the core-wetting specimen is more sensitive to water than specimens with other water distribution models.

Reduced Gray Matter Volume of Auditory Cortical and Subcortical Areas in Congenitally Deaf Adolescents: A Voxel-Based Morphometric Study

  • Tae, Woo-Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Purpose: Several morphometric studies have been performed to investigate brain abnormalities in congenitally deaf people. But no report exists concerning structural brain abnormalities in congenitally deaf adolescents. We evaluated the regional volume changes in gray matter (GM) using voxel-based morphometry (VBM) in congenitally deaf adolescents. Materials and Methods: A VBM8 methodology was applied to the T1-weighted magnetic resonance imaging (MRI) scans of eight congenitally deaf adolescents (mean age, 15.6 years) and nine adolescents with normal hearing. All MRI scans were normalized to a template and then segmented, modulated, and smoothed. Smoothed GM data were tested statistically using analysis of covariance (controlled for age, gender, and intracranial cavity volume). Results: The mean values of age, gender, total volumes of GM, and total intracranial volume did not differ between the two groups. In the auditory centers, the left anterior Heschl's gyrus and both inferior colliculi showed decreased regional GM volume in the congenitally deaf adolescents. The GM volumes of the lingual gyri, nuclei accumbens, and left posterior thalamic reticular nucleus in the midbrain were also decreased. Conclusions: The results of the present study suggest that early deprivation of auditory stimulation in congenitally deaf adolescents might have caused significant underdevelopment of the auditory cortex (left Heschl's gyrus), subcortical auditory structures (inferior colliculi), auditory gain controllers (nucleus accumbens and thalamic reticular nucleus), and multisensory integration areas (inferior colliculi and lingual gyri). These defects might be related to the absence of general auditory perception, the auditory gating system of thalamocortical transmission, and failure in the maturation of the auditory-to-limbic connection and the auditorysomatosensory-visual interconnection.

CONSTRUCTION OF POSITIVE INTERPOLATION FUNCTIONS FOR DIFFUSION TENSOR

  • Shim, Hong-Tae
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.563-570
    • /
    • 2007
  • There has been a considerable research interest in medical communities for neuronal fiber tracking with magnetic resonance diffusion tensor imaging(DTI). DTI data have abundant structural boundaries that need to be preserved during interpolation to facilitate fiber tracking. Sigmoid function has been used in recent papers but the sigmoid function still is not good enough to be served as an positive interpolation in mathematical point of view. In this paper, we construct and provide two families positive cardinal interpolation functions.