• Title/Summary/Keyword: Structural Impedance

Search Result 262, Processing Time 0.025 seconds

Degradation of Epoxy Coating due to Aging Acceleration Effects

  • Nah, Hwan Seon;Lee, Chul Woo;Suh, Yong Pyo
    • Corrosion Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.99-105
    • /
    • 2006
  • This paper is to investigate feasibility on quantitative aging state of epoxy coating on concrete wall in containment structure under operation of nuclear power plants. For evaluating the physical characteristics of the epoxy coating, adhesion strengths of two kinds of degraded epoxy coating systems on both steel surfaces and concrete surfaces were measured via accelerated aging. Comparatively impedance data taken by ultrasonic test were also taken to relate with adhesion data. After aging, in case of concrete, from half of specimens, aging of epoxy coating was developed. As for steel, on $4^{th}$ inspection day, adhesion force was failed. To improve reliability on quality degradation of epoxy, relationship between adhesion and impedance was analyzed. By tracing to co-respond to these data, it was possible to Fig. out physical state of as-built epoxy coating. The possibility to develop new methodology of time - dependent aging state on epoxy coating was found and discussed.

A Study on the Characteristics of Natural Frequency and Impedance of Elastically Restrained Cracked Beam with a Tip Mass (말단질량을 갖는 탄성지지 균열보의 고유주파수와 임피던스 특성 연구)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.317-325
    • /
    • 2020
  • The development of a technique that can monitor the cracks, which is one of the typical types of damage, is necessary to secure the structural safety of elastically restrained cantilever-type beams with a tip mass that is used widely in infrastructure. Impedance techniques have been actively researched to detect cracks, and the cracks were estimated mainly by experimentally investigating the relationship between the crack and impedance signal. This study examined the correlation between the change in the impedance signals due to the crack, and the natural frequency obtained analytically. After updating the analysis model for the intact beam, the impedance signal was measured while gradually inflicting cracks in the cantilever-type beam, and the damage index was obtained. The results were compared with the natural frequencies calculated from the updated analysis model to investigate the correlation. A close correlation was observed between the experimentally obtained impedance damage index, and the analytically calculated natural frequency. Using this correlation, the structural characteristics could be evaluated more accurately from the damage estimation results, and the behavior of the structure could be predicted effectively using the analysis model.

The Structural and Electrochemical Properties of Thermally Aged Li[Co0.1Ni0.15Li0.2Mn0.55]O2 Cathodes

  • Park, Yong-Joon;Lee, Ju-Wook;Lee, Young-Gi;Kim, Kwang-Man;Kang, Man-Gu;Lee, Young-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2226-2230
    • /
    • 2007
  • As a cathode material of lithium rechargeable batteries, charged Li[Co0.1Ni0.15Li0.2Mn0.55]O2 electrodes, which were aged thermally at 25 oC and 90 oC respectively, were characterized by means of charge/discharger, impedance spectroscopy, and X-ray diffraction. The discharge capacity diminution of the electrodes aged at 25 oC and 90 oC for 1 week was 4% and 23%, respectively. The cell aged at 25 oC was recovered on cycling. However, the capacity loss after ageing at 90 oC was not recovered in a subsequent cycling test, which demonstrates that the reaction occurring during ageing at 90 oC is irreversible. A significant impedance increase of aged electrode at 90 oC is associated with irreversible capacity loss. The structural changes including phase transformation were not detected by XRD analysis, because it could be due to out of detection limit. After ageing, impedance was slightly decreased during subsequent cycling test. It could be explained the cyclic performance of aged sample is stable. The thermal stability was not deteriorated by ageing even at the high temperature of 90 oC.

An Experimental Study of the Corrosion Behavior Evaluation of Rebar in Concrete by Using Electrochemical Impedance Spectroscopy (EIS) Method (EIS를 이용한 콘크리트 내부 철근의 부식거동평가에 관한 실험적 연구)

  • Park, Jang-Hyun;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.83-90
    • /
    • 2017
  • The corrosion behavior of a rebar in concrete according to the amount of NaCl and $LiNO_2$ was observed by using Electrochemical Impedance Spectroscopy. The corrosion was accelerated in a short time by using dry/wet cycles method, which is one of the corrosion acceleration methods, and though the value of measured impedance, equivalent circuit can be introduced. It was confirmed that the passive film of a embedded rebar in concrete with NaCl was broken quickly, and when $0.6M\;LiNO_2$ was added, the velocity of ongoing corrosion was declined considerably compared to the amount of NaCl. However, when $1.2M\;LiNO_2$ was added, it was confirmed that the passive film was not broken and its performance remained, compared to the amount of NaCl.

An electromechanical impedance-based method for tensile force estimation and damage diagnosis of post-tensioning systems

  • Min, Jiyoung;Yun, Chung-Bang;Hong, Jung-Wuk
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.107-122
    • /
    • 2016
  • We propose an effective methodology using electromechanical impedance characteristics for estimating the remaining tensile force of tendons and simultaneously detecting damages of the anchorage blocks. Once one piezoelectric patch is attached on the anchor head and the other is bonded on the bearing plate, impedance responses are measured through these two patches under varying tensile force conditions. Then statistical indices are calculated from the impedances, and two types of relationship curves between the tensile force and the statistical index (TE Curve) and between statistical indices of two patches (SR Curve) are established. Those are considered as database for monitoring both the tendon and the anchorage system. If damage exists on the bearing plate, the statistical index of patch on the bearing plate would be out of bounds of the SR curve and damage can be detected. A change in the statistical index by damage is calibrated with the SR curve, and the tensile force can be estimated with the corrected index and the TE Curve. For validation of the developed methodology, experimental studies are performed on the scaled model of an anchorage system that is simplified only with 3 solid wedges, a 3-hole anchor head, and a bearing plate. Then, the methodology is applied to a real scale anchorage system that has 19 strands, wedges, an anchor head, a bearing plate, and a steel duct. It is observed that the proposed scheme gives quite accurate estimation of the remaining tensile forces. Therefore, this methodology has great potential for practical use to evaluate the remaining tensile forces and damage status in the post-tensioned structural members.

A Study on Self-Healing Bolted Joints using Shape Memory Alloy (형상기억합금을 이용한 자가치유 볼트접합부 시스템에 관한 연구)

  • Chang, Ha-Joo;Lee, Chang-Gil;Park, Seung-Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.629-636
    • /
    • 2011
  • This paper describes the smart structural system that uses smart materials for real-time monitoring and active control of bolted joints in steel structures. The impedance-based structural health monitoring (SHM) techniques, which utilize the electro-mechanical coupling property of piezoelectric materials, was used to detect loose bolts in bolted joints. By monitoring the measured electrical impedance and comparing it with the measured baseline, a bolt loosening damage was detected. The damage was evaluated quantitatively using the damage metrics in conductance signature with respect to the healthy states. When loosening damage was detected in the bolted joint, the external heater actuated the shape memory alloy (SMA) washer. Then the heated SMA washer expanded axially and adjusted the bolt tension to restore the lost torque. An experiment was conducted by integrating the piezoelectric-material-based SHM function and the SMA-based active control function on a bolted joint, after which the performance of thesmart self-healing joint system was investigated.

Damage Detecion of CFRP-Laminated Concrete based on a Continuous Self-Sensing Technology (셀프센싱 상시계측 기반 CFRP보강 콘크리트 구조물의 손상검색)

  • Kim, Young-Jin;Park, Seung-Hee;Jin, Kyu-Nam;Lee, Chang-Gil
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.407-413
    • /
    • 2011
  • This paper reports a novel structural health monitoring (SHM) technique for detecting de-bonding between a concrete beam and CFRP (Carbon Fiber Reinforced Polymer) sheet that is attached to the concrete surface. To achieve this, a multi-scale actuated sensing system with a self-sensing circuit using piezoelectric active sensors is applied to the CFRP laminated concrete beam structure. In this self-sensing based multi-scale actuated sensing, one scale provides a wide frequency-band structural response from the self-sensed impedance measurements and the other scale provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. To quantify the de-bonding levels, the supervised learning-based statistical pattern recognition was implemented by composing a two-dimensional (2D) plane using the damage indices extracted from the impedance and guided wave features.

Soil interaction effects on the performance of compliant liquid column damper for seismic vibration control of short period structures

  • Ghosh, Ratan Kumar;Ghosh, Aparna Dey
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.89-105
    • /
    • 2008
  • The paper presents a study on the effects of soil-structure-interaction (SSI) on the performance of the compliant liquid column damper (CLCD) for the seismic vibration control of short period structures. The frequency-domain formulation for the input-output relation of a flexible-base structure with CLCD has been derived. The superstructure has been modeled as a linear, single degreeof-freedom (SDOF) system. The foundation has been considered to be attached to the underlying soil medium through linear springs and viscous dashpots, the properties of which have been represented by complex valued impedance functions. By using a standard equivalent linearization technique, the nonlinear orifice damping of the CLCD has been replaced by equivalent linear viscous damping. A numerical stochastic study has been carried out to study the functioning of the CLCD for varying degrees of SSI. Comparison of the damper performance when it is tuned to the fixed-base structural frequency and when tuned to the flexible-base structural frequency has been made. The effects of SSI on the optimal value of the orifice damping coefficient of the damper has also been studied. A more convenient approach for designing the damper while considering SSI, by using an established model of a replacement oscillator for the structure-soil system has also been presented. Finally, a simulation study, using a recorded accelerogram, has been carried out on the CLCD performance for the flexible-base structure.

Assessment of temperature effect in structural health monitoring with piezoelectric wafer active sensors

  • Kamas, Tuncay;Poddar, Banibrata;Lin, Bin;Yu, Lingyu
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.835-851
    • /
    • 2015
  • This paper presents theoretical and experimental evaluation of the structural health monitoring (SHM) capability of piezoelectric wafer active sensors (PWAS) at elevated temperatures. This is important because the technologies for structural sensing and monitoring need to account for the thermal effect and compensate for it. Permanently installed PWAS transducers have been One of the extensively employed sensor technologies for in-situ continuous SHM. In this paper, the electro-mechanical impedance spectroscopy (EMIS) method has been utilized as a dynamic descriptor of PWAS behavior and as a high frequency standing wave local modal technique. Another SHM technology utilizes PWAS as far-field transient transducers to excite and detect guided waves propagating through the structure. This paper first presents how the EMIS method is used to qualify and quantify circular PWAS resonators in an increasing temperature environment up to 230 deg C. The piezoelectric material degradation with temperature was investigated and trends of variation with temperature were deduced from experimental measurements. These effects were introduced in a wave propagation simulation software called Wave Form Revealer (WFR). The thermal effects on the substrate material were also considered. Thus, the changes in the propagating guided wave signal at various temperatures could be simulated. The paper ends with summary and conclusions followed by suggestions for further work.

Crack and Debonding Donitoring of RC Beams Strengthened with CFRP Plates (CFRP 판 보강 RC보의 균열 및 박리 손상 모니터링)

  • Yoon, Jun Ho;Han, Jung Hun;Cho, Doo Yong;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.185-192
    • /
    • 2011
  • A CFRP (Carbon Fiber-Reinforced Plastic) strengthening method being widely used to increase the load-carrying capacity of structures is very suitable for existing bridge structures. However, not only flexure and shear failures but also debonding failure might be additionally occured in reinforced concrete(RC) beams strengthened with the CFRP plates. The CFRP debonding failure would cause a brittle fracture of the beam. Therefore, health monitoring for the CFRP bonding condition is strongly required. In this study, a feasibility of the impedance-based damage detection method using PZT sensors was investigated through a series of experimental studies for realtime structural health monitoring(SHM) for the CFRP laminated concrete structures.