• Title/Summary/Keyword: Structural Fitting

Search Result 209, Processing Time 0.029 seconds

The path of placement of a removable partial denture: a microscope based approach to survey and design

  • Mamoun, John Sami
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.76-84
    • /
    • 2015
  • This article reviews the topic of how to identify and develop a removable partial denture (RPD) path of placement, and provides a literature review of the concept of the RPD path of placement, also known as the path of insertion. An optimal RPD path of placement, guided by mutually parallel guide planes, ensures that the RPD flanges fit intimately over edentulous ridge structures and that the framework fits intimately with guide plane surfaces, which prevents food collecting empty spaces between the intaglio surface of the framework and intraoral surfaces, and ensures that RPD clasps engage adequate numbers of tooth undercuts to ensure RPD retention. The article covers topics such as the causes of obstructions to RPD intra-oral seating, the causes of food collecting empty spaces that may exist around an RPD, and how to identify if a guide plane is parallel with the projected RPD path of placement. The article presents a method of using a surgical operating microscope, or high magnification (6-8x or greater) binocular surgical loupes telescopes, combined with co-axial illumination, to identify a preliminary path of placement for an arch. This preliminary path of placement concept may help to guide a dentist or a dental laboratory technician when surveying a master cast of the arch to develop an RPD path of placement, or in verifying that intra-oral contouring has aligned teeth surfaces optimally with the RPD path of placement. In dentistry, a well-fitting RPD reduces long-term periodontal or structural damage to abutment teeth.

Study on the Minimization of Shape Parameters by Reverse Design of an Axial Turbine Blade (축류형 터빈 익형의 역설계에 의한 최소 형상변수에 관한 연구)

  • Cho, Soo-Yong;Oh, Koon-Sup;Yoon, Eui-Soo;Choi, Bum-Seog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.4 s.9
    • /
    • pp.30-37
    • /
    • 2000
  • Several reverse design methods are developed and applied to the suction or pressure surface for finding design values of blade geometry for a given axial turbine blade. Re-designed blade profiles using shape parameters are compared with measured blade data. Essential shape parameters for blade design are induced by the procedure of reverse design for best fitting. Characteristics of shape parameters are evaluated through the system design method and restriction conditions of structural stability or aerodynamic flow loss. Some of shape parameters i.e blade radius or exit blade angle etc., are classified to weakly adjustable shape parameters, otherwise strongly adjustable shape parameters which would be applied for controlling blade shape. Average deviation values between the measured data and re-designed blade using shape parameters are calculated for each design method. Comparing with the average deviation for a given blade geometry, minimum shape parameters required to design a blade geometry are obtained.

  • PDF

Study of central buckle effects on flutter of long-span suspension bridges

  • Han, Yan;Li, Kai;Cai, C.S.
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.403-418
    • /
    • 2020
  • To investigate the effects of central buckles on the dynamic behavior and flutter stability of long-span suspension bridges, four different connection options between the main cable and the girder near the mid-span position of the Aizhai Bridge were studied. Based on the flutter derivatives obtained from wind tunnel tests, formulations of self-excited forces in the time domain were obtained using a nonlinear least square fitting method and a time-domain flutter analysis was realized. Subsequently, the influences of the central buckles on the critical flutter velocity, flutter frequency, and three-dimensional flutter states of the bridge were investigated. The results show that the central buckles can significantly increase the frequency of the longitudinal floating mode of the bridge and have greater influence on the frequencies of the asymmetric lateral bending mode and asymmetric torsion mode than on that of the symmetric ones. As such, the central buckles have small impact on the critical flutter velocity due to that the flutter mode of the Aizhai Bridge was essentially the symmetric torsion mode coupled with the symmetric vertical mode. However, the central buckles have certain impact on the flutter mode and the three-dimensional flutter states of the bridge. In addition, it is found that the phenomenon of complex beat vibrations (called intermittent flutter phenomenon) appeared in the flutter state of the bridge when the structural damping is 0 or very low.

A Study on the Weight Minimization of an Engine Block (엔진 블록의 중량 최소화에 관한 연구)

  • 오창근;박석주;박영범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.182-190
    • /
    • 1997
  • Recently to develope an automobile with better properties, much researches and investments are executed in many countries. In this paper, it is intended to minimize the weight of an engine block without changing the dynamic characteristics. The weight minimization is executed by the sensitivity of the natural frequency of the engine block. To decrease the engine weight, much less thickness than the original thickness of the engine is selected to initial value and the structure modification is performed to recover the dynamic characteristics of the engine. Here, the original thickness of the engine is 8mm and the initial thickness is selected to 5mm, 6mm and the number if the natural frequencies fitted are 2, 6, 7, respectively. As the results, it is found that; (1) the weight of each case could be reduced without changing the objective natural frequencies. Specially, in the case of fitting 2 natural frequencies with 5mm initial thickness the weight could be reduced to 4.21kg(23.3% for engine weight). (2) according to the driving frequency range of engine, the weight minimization could be performed choicely, (3) improving a vibration characteristics of a orignal structure, the weight minimization could be performed.

  • PDF

The BRQ(Brand Relation Quality) Construct Perceived by Fashion Product Consumers (Part 2) (패션상품 소비자가 인식하는 상표관계본질(BRQ: Brand Relationship Quality) 규명 (제2보))

  • Chae, Jin-Mie;Rhee, Eun-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.8
    • /
    • pp.1168-1179
    • /
    • 2007
  • The objective of this research is to validate the BRQ(Brand Relationship Quality) Construct perceived by fashion product consumers. In order to establish and verify the BRQ scale, qualitative survey and quantitative survey were conducted together. 1592 copies of questionnaire were distributed to women in their 20s to 40s living in Seoul and other metropolitan areas from Dec. 26, 2005 to Jan. 8, 2006, and 723 copies of them were used for statistical data. Samplel(n=482)was used for empirical analysis, and sample2(n=241) was used for cross validity test. The data was analyzed using Exploratory Factor Analysis, Confirmatory Factor Analysis, and Pearson's Correlation Analysis. BRQ emerged from exploratory factor analysis as the hierarchical construct composed of six facets including 'self-connective attachment', 'symbol/mystery', 'trust', 'nostalgia', 'intimacy', and 'knowledge'. As the fit of this structural model was not good as a result of Confirmatory Factor Analysis, it was revised to have better fitting. Finally, empirical survey results indicate the hierarchical construct consisting of eight distinct BRQ facets including 'love/commitment', 'self-connection', 'symbol', 'mystery', 'trust', 'nostalgia', 'intimacy', and 'knowledge' as best representing the final 39item BRQ Scale. Reliability, construct validity, and cross validity of the construct were verified.

Two scale modeling of behaviors of granular structure: size effects and displacement fluctuations of discrete particle assembly

  • Chu, Xihua;Yu, Cun;Xiu, Chenxi;Xu, Yuanjie
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.315-334
    • /
    • 2015
  • This study's primary aim is to check the existence of a representative volume element for granular materials and determine the link between the properties (responses) of macro structures and the size of the discrete particle assembly used to represent a constitutive relation in a two-scale model. In our two-scale method the boundary value problem on the macro level was solved using finite element method, based on the Cosserat continuum; the macro stresses and modulus were obtained using a solution of discrete particle assemblies at certain element integration points. Meanwhile, discrete particle assemblies were solved using discrete element method under boundary conditions provided by the macro deformation. Our investigations focused largely on the size effects of the discrete particle assembly and the radius of the particle on macro properties, such as deformation stiffness, bearing capacity and the residual strength of the granular structure. According to the numerical results, we suggest fitting formulas linking the values of different macro properties (responses) and size of discrete particle assemblies. In addition, this study also concerns the configuration and displacement fluctuation of discrete particle assemblies on the micro level, accompanied with the evolution of bearing capacity and deformation on the macro level.

Robot Control Method in Parameter Space Adopting Biomimetics (생체모방기술을 접목한 파라미터 공간에서의 로봇제어 기법)

  • Kim, Heejoong
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.16-23
    • /
    • 2018
  • In the paper, a robot control technique by employing Biomimetics is described. Rhythmic movements of the diving beetle's leg were analyzed and the formulated equations on the motion were drawn by applying Fourier least mean square fitting method. Simple control parameters were defined by comparing the observed locomotion through a motion capture system and reproduced motions according to changes in the values in the equation. Subsequently, the correlation of each parameter was discovered and expressed in a parameter space. Apparently, it was confirmed that various bio-mimicking motions can simply be generated for controlling the robot. Additionally, robot designing based on adopting structural advantages which the living organism possess have been briefly introduced. The proposed bio-mimicking motion generating technique was observed to be applicable to robot system developments under various environmental conditions.

Verification of Damage Detection Using In-Service Time Domain Response (사용중 시간영역응답을 이용한 손상탐지이론의 검증)

  • Choi, Sang-Hyun;Kim, Dae-Hyork;Park, Nam-Hoi
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.9-13
    • /
    • 2009
  • Modal parameters including resonant frequencies and mode shapes are heavily utililized in most damage identification throries for structural health monitoring. However, extracting modal parameters from dynamic responses needs postprocessing which inevitably involves errors in curve-fitting resonants as well as transforming the domain of responses. In this paper, the applicability of a damage identification method based on free vibration responses to the in-sevice responses is experimentally verified. The experiment is performed via applying periodic and nonperiodic moving loads to a simply supported beam and displacement responses are measured. The moving load is simulated using steel balls and a downhill device. The damage identification results show that the in-service response may be applicable to identifying damage in the beam.

Dynamic analysis of ACTIVE MOUNT using viscoelastic-elastoplastic material model

  • Park, Taeyun;Jung, Wonuk
    • International Journal of Reliability and Applications
    • /
    • v.17 no.2
    • /
    • pp.137-147
    • /
    • 2016
  • The engine mount of a car subjected to a pre-load related to the weight of the engine, and acts to insulate the vibration coming from the engine by moving on large or small displacement depending on the driving condition of the car. The vibration insulation of the engine mount is an effect obtained by dissipating the mechanical energy into heat by the viscosity characteristic of the rubber and the microscopic behavior of the additive carbon black. Therefore, dynamic stiffness from the intrinsic properties of rubber filled with carbon black at the design stage is an important design consideration. In this paper, we introduced a hyper-elastic, visco-elastic and elasto-plastic model to predict the dynamic characteristics of rubber, and developed a fitting program to determine the material model parameters using MATLAB. The dynamic characteristics analysis of the rubber insulator of the ACTIVE MOUNT was carried out by using MSC.MARC nonlinear structural analysis software, which provides the dynamic characteristics material model. The analysis results were compared with the dynamic characteristics test results of the rubber insulator, which is one of the active mount components, and the analysis results were confirmed to be valid.

A hybrid method for dynamic stiffness identification of bearing joint of high speed spindles

  • Zhao, Yongsheng;Zhang, Bingbing;An, Guoping;Liu, Zhifeng;Cai, Ligang
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.141-159
    • /
    • 2016
  • Bearing joint dynamic parameter identification is crucial in modeling the high speed spindles for machining centers used to predict the stability and natural frequencies of high speed spindles. In this paper, a hybrid method is proposed to identify the dynamic stiffness of bearing joint for the high speed spindles. The hybrid method refers to the analytical approach and experimental method. The support stiffness of spindle shaft can be obtained by adopting receptance coupling substructure analysis method, which consists of series connected bearing and joint stiffness. The bearing stiffness is calculated based on the Hertz contact theory. According to the proposed series stiffness equation, the stiffness of bearing joint can be separated from the composite stiffness. Then, one can obtain the bearing joint stiffness fitting formulas and its variation law under different preload. An experimental set-up with variable preload spindle is developed and the experiment is provided for the validation of presented bearing joint stiffness identification method. The results show that the bearing joint significantly cuts down the support stiffness of the spindles, which can seriously affects the dynamic characteristic of the high speed spindles.