• Title/Summary/Keyword: Structural Dynamic Characteristics

Search Result 1,361, Processing Time 0.029 seconds

Earthquake Behavior Characteristics and Seismic Performance Evaluation of Phayathonzu Temple in Myanmar (미얀마 파야똔주 사원의 지진거동 특성 및 내진성능 평가)

  • Kim, Ho-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Phayathonzu temple in Myanmar was made of masonry bricks, and so it was vulnerable to lateral load such as earthquake. Especially, it has many difficulties in structural modeling and dynamic analysis because the discontinuous characteristics of masonry structure should be considered. So, it is necessary to provide the seismic performance evaluation technology through the inelastic dynamic modeling and analysis under earthquake loads for the safety security of masonry brick temple. Therefore, this study analyzes the seismic behavior characteristics and evaluates the seismic performance for the 479 structure with many cracks and deformations. Through the evaluation results, we found out the structural weak parts on earthquake loads.

Structural Dynamic Analysis of Bearingless Rotor System with Cross-shaped Composite Flexbeam (십자형 복합재 유연보 장착 무베어링 로터 시스템 구조동역학 해석)

  • Kim Do-Hyung;Lim In-Gyu;Lee Myung-Kyu;Lee In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.108-111
    • /
    • 2004
  • Structural dynamic characteristics and aeroelastic stability of a small-scale bearingless rotor system have been investigated. A flexbeam is one of the most important component of bearingless hub system. It must have sufficient torsional flexibility as well as baseline stiffness in order to produce feathering motion. In the present paper, a cross-shaped composite flexbeam has been proposed for a guarantee of torsional flexibility and flapwise and lagwise bending stiffness. One dimensional elastic beam model was used for the construction of a structural model. Equivalent isotropic sectional stiffness was used in the blade model, and the flexbeam was regarded as anisotropic; which has ten independent stiffness quantities. CAMRAD II has been used for the analysis of structural dynamic characteristics of the bearingless rotor system. Rotational natural frequencies and aeroelastic stability at hovering have been investigated. Analysis result shows that the cross-shaped flexbeam has the rotational natural frequency tuning capacity.

  • PDF

Dynamic tensile characteristics of SUS304L steel sheets (SUS304계열 강판의 동적인장특성)

  • Kim, J.S.;Huh, H.;Lee, J.W.;Kwon, T.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.360-363
    • /
    • 2007
  • This paper deals with the dynamic tensile characteristics of the steel sheets for structural members of a train. Train accidents occurs rarely but lead to many casualties and economical loss. Therefore the safety of the train becomes important during the train crash. The dynamic tensile characteristics of the steel sheets are indispensable to analyze the structural crashworthiness. Current research reports the stress-strain curves, fracture elongation and strain rate sensitivities evaluated at the various strain rates especially for SUS304L-ST and SUS304L-LT steel sheets. The results include the difference in the dynamic tensile characteristics of both rolling and transverse directions. Dynamic tensile tests were performed at the strain rates ranging from 0.003/sec to 200/sec using High Speed Material Testing Machine. The materials tested in this research shows interesting behavior at the low strain rates. The strain hardening exponent decreases remarkably while the yield strength increases.

  • PDF

Dynamic characteristics of hybrid tower of cable-stayed bridges

  • Abdel Raheem, Shehata E.
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.803-824
    • /
    • 2014
  • The dynamic characterization is important in making accurate predictions of the seismic response of the hybrid structures dominated by different damping mechanisms. Different damping characteristics arise from the construction of the tower with different materials: steel for the upper part; reinforced concrete for the lower main part and interaction with supporting soil. The process of modeling damping matrices and experimental verification is challenging because damping cannot be determined via static tests as can mass and stiffness. The assumption of classical damping is not appropriate if the system to be analyzed consists of two or more parts with significantly different levels of damping, such as steel/concrete mixed structure - supporting soil coupled system. The dynamic response of structures is critically determined by the damping mechanisms, and its value is very important for the design and analysis of vibrating structures. An analytical approach capable of evaluating the equivalent modal damping ratio from structural components is desirable for improving seismic design. Two approaches are considered to define and investigate dynamic characteristics of hybrid tower of cable-stayed bridges: The first approach makes use of a simplified approximation of two lumped masses to investigate the structure irregularity effects including damping of different material, mass ratio, frequency ratio on dynamic characteristics and modal damping; the second approach employs a detailed numerical step-by step integration procedure in which the damping matrices of the upper and the lower substructures are modeled with the Rayleigh damping formulation.

Investigation of the SHM-oriented model and dynamic characteristics of a super-tall building

  • Xiong, Hai-Bei;Cao, Ji-Xing;Zhang, Feng-Liang;Ou, Xiang;Chen, Chen-Jie
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.295-306
    • /
    • 2019
  • Shanghai Tower is a 632-meter super high-rise building located in an area with wind and active earthquake. A sophisticated structural health monitoring (SHM) system consisting of more than 400 sensors has been built to carry out a long-term monitoring for its operational safety. In this paper, a reduced-order model including 31 elements was generated from a full model of this super tall building. An iterative regularized matrix method was proposed to tune the system parameters, making the dynamic characteristic of the reduced-order model be consistent with those in the full model. The updating reduced-order model can be regarded as a benchmark model for further analysis. A long-term monitoring for structural dynamic characteristics of Shanghai Tower under different construction stages was also investigated. The identified results, including natural frequency and damping ratio, were discussed. Based on the data collected from the SHM system, the dynamic characteristics of the whole structure was investigated. Compared with the result of the finite element model, a good agreement can be observed. The result provides a valuable reference for examining the evolution of future dynamic characteristics of this super tall building.

Dynamic Behavior Characteristics According to Arch Types of Arched Stone Bridge Subjected to Seismic Load (지진 하중을 받는 홍예교의 아치 형태에 따른 동적 거동 특성)

  • Kim, Ho-Soo;Lee, Seung-Hee;Jeon, Gun-Woo;Bang, Hyeok-Kyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.45-55
    • /
    • 2018
  • The arched stone bridge has been continuously deteriorated and damaged by the weathering and corrosion over time, and also natural disaster such as earthquake has added the damage. However, masonry stone bridge has the behavior characteristics as discontinuum structure and is very vulnerable to lateral load such as earthquake. So, it is necessary to analyze the dynamic behavior characteristics according to various design variables of arched stone bridge under seismic loads. To this end, the arched stone bridge can be classified according to arch types, and then the discrete element method is applied for the structural modelling and analysis. In addition, seismic loads according to return periods are generated and the dynamic analysis considering the discontinuity characteristics is carried out. Finally, the dynamic behavior characteristics are evaluated through the structural safety estimation for slip condition.

Vibration reduction of military vehicle frame with using structural dynamic characteristics analysis (구조 동특성 분석을 통한 군용 차량 프레임 진동 저감)

  • Lee, Sang-Jeong;Park, Jong-Beom;Park, No-Cheol;Lee, Jong-Hak;Kim, Han-Shang;Jeong, Eui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.281-284
    • /
    • 2014
  • Unlike ordinary vehicle chassis frame, chassis frame of military vehicle is long and that is operated in harsh driving environment in middle of war. Thus, because large dynamic loads is acting on the frame, it is important to secure the durability of the frame based on the structural dynamic characteristic analysis. The purpose of the study is that the chassis frame is optimized to secure durability of the chassis frame of the military vehicle according to the structural dynamic characteristic analysis. Also, structure optimization are performed using parametric optimization and topology optimization methods.

  • PDF

Dynamic response analysis of closed loop control system for intelligent truss structures based on probability

  • Gao, W.;Chen, J.J.;Ma, H.B.;Ma, X.S.;Cui, M.T.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.239-248
    • /
    • 2003
  • The dynamic response analysis of closed loop control system based on probability for the intelligent truss structures with random parameters is presented. The expressions of numerical characteristics of structural dynamic response of closed loop control system are derived by means of the mode superposition method, in which the randomness of physical parameters of structural materials, geometric dimensions of active bars and passive bars, applied loads and control forces are considered simultaneously. The influences of the randomness of them on structural dynamic response are inspected by several engineering examples and some significant conclusions are obtained.

Dynamic analysis for complex structures using the improved component mode method (개선된 콤포넌트 모드법을 이용한 거대구조물의 동적해석)

  • 심재수;박명균
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.37-44
    • /
    • 1993
  • There are a lot of linear dynamic analysis methods for complex structures. Each method has advantages and shortcomings. Method of dynamic analysis for complex structure is selected considering characteristics of dynamic loading, computer facility available number of degree of freedem and accuracy of results. It is a main point of view to get economical results rather then accurate ones for analysis of general complex structures, Mode superposition method and direct integration method are generally used. However, the characteristics of load is not considered in mode superpositon method, the personal computer cannot be used in direct integration methods. To over-come these shortcomings, the component mode method incorporating Ritz algorithm updated is proposed to solve economically dynamic behavior of the structures. The purpose of study is a formulation of algorithm, and computer programing suitable for dynamic analysis of the complex structure in personal computer environment.

  • PDF

Identification of Load Carrying and Vibration Characteristics of Oil-Free Foil Journal Bearing Structures for High Speed Motors (고속 전동기용 무급유 포일 저널 베어링 구조체의 하중지지 및 진동 특성 규명)

  • Baek, Doo San;Hwang, Sung Ho;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.261-272
    • /
    • 2021
  • This study investigates the structural characteristics of oil-free, gas beam foil journal bearings (GBFJBs) for use in high speed motors. Mathematical modeling was carried out, and reaction force modeling for static load was performed to predict the structural characteristics of the GBFJB. Mathematical modeling and reaction force modeling for static load are performed to predict the structural characteristics of GBFJBs. The reaction force of the test bearing against static loads was measured during experiments and compared with the predicted results. The measured experimental data reveal the nonlinear stiffness characteristics of the GBFJB against varying displacement and agree well with the predictions. Dynamic load tests using an exciter allow to identify the vibration characteristics of the GBFJB. Test results show that the vibration displacement, dynamic force, and acceleration measured on the test bearing are most dominant at the applied dynamic load (synchronization) frequency. Futhermore, the test results show that the hysteresis area recorded during the dynamic tests increases with the excitation amplitude and frequency, and that the beam stick phenomena occurr at high excitation frequencies. The single degree of freedom (DOF) vibration model aids to identify the stiffness and damping coefficient of the GBFJB, which decrease as the excitation frequency increases.