• Title/Summary/Keyword: Structural Damping

Search Result 1,216, Processing Time 0.062 seconds

Electrically Induced Damping Characteristics and a Relevant Requirement for the Maximum Power Generation in Piezoelectric Vibration Energy Harvesters (압전 진동 에너지 수확 장치의 전기 유발 감쇠 특성 및 최대 전력 발생 조건)

  • Kim, Jae Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.6
    • /
    • pp.406-413
    • /
    • 2015
  • The piezoelectric coupling in piezoelectric vibration energy harvesters with load resistance induces electrical damping as well as increase in the system stiffness. Starting from analytically deriving the explicit relations through governing equations in the frequency domain, this work identifies the characteristics of the electrically induced damping mechanism and shows that the electrically induced damping serves as a structural hysteretic damping on condition that a piezoelectric vibration energy harvester is excited at its short-circuit resonant frequency and its load resistor is optimally impedance- matched at the same time. Finally, it is analytically verified that the equivalence of a mechanical and an electrically induced damping ratio is required for the maximum power generation at a load resistor, which was claimed in some literature.

Seismic Retrofit Using Damping Devices for Short-period Structures Excited by Ground Accelerations Similar to Gyeong-ju Earthquakes (감쇠장치를 사용한 경주지진과 유사한 특성을 가지는 지반가속도로 가진된 단주기구조물 내진성능보강)

  • Roh, Ji Eun;Lee, Sang Hyun;Seo, Jun Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.503-508
    • /
    • 2016
  • In this study, effectiveness of seismic retrofitting methods using passive damping devices was investigated through numerical analyses of short-period structures under earthquakes which have short-duration and high-frequency impulse characteristics similar to Geyongju earthquakes. Displacement spectra of elastic systems and ductility demand of inelastic systems were evaluated by increasing viscous or friction damping. The damping devices could reduce responses of the structures with shorter structural period than 0.2s. The earthquakes similar to impulse load did not induce the responses of the structures with longer period than 0.4s, and the effects of the damping devices which generates damping forces proportional to structural responses became insignificant.

Application of Strain Energy for Determining the Location of Damping Material (스트레인 에너지를 이용한 제진재 위치 결정)

  • Kim, Joong-Bae;Ryu, Kuk-Hyun;Park, Sang-Kyu;Lee, Sang-Jo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1199-1205
    • /
    • 2008
  • The vehicle design engineers have studied the method of applying damping materials to the vehicle bodies by computer simulations and experimental methods in order to improve the vibration and noise characteristics of the vehicles. The unconstrained layer damping, being concerned with this study, has two layers(base layer and damping layer) and proyides vibration control of the base layer through extensional damping. Generally this kind of surface damping method is effectively used in reducing structural vibration at frequencies beyond 150Hz. The most important thing is how to apply damping treatment with respect to location and size of the damping material. To solve these problems, the current experimental methods have technical limits which are cumbersome, time consuming, and expensive. This Paper proposes a method based on finite element method and it employes averaged ESE(element strain energy) percent of total of dash panel assembly for 1/1 octave band frequency range by MSC/NASTRAN. The regions of high ESE percent of total are selected as proposed location of damping treatment. The effect of damping treatment is analyzed by comparing the frequency response function of the SPCC bare Panel and the damping treated panels.

Structural Design and Construction for Tall Damped Building with Irregularly-Shaped Plan and Elevation

  • Yamashita, Yasuhiko;Kushima, Soichiro;Okuno, Yuuichirou;Morishita, Taisei
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.3
    • /
    • pp.255-264
    • /
    • 2018
  • This paper introduces three distinctive means for the use of a 189-meter high damped structure ensuring safety against earthquake: 1. Realization of L-shaped elevational structural planning: The bottom and top of the tower have belt trusses and hat trusses respectively to restrain the bending deformation. Furthermore, large-capacity oil dampers (damping force 6,000 kN) are installed in the middle part of the tower to restrain the higher-mode deformation. 2. Realization of L-shaped planar structural planning: We devised a means of matching the centers of gravity and rigidity by adjusting planar rigidity. Moreover, viscous damping devices are located at the edges of the L-shaped plan, where torsional deformation tends to be amplified. We call this the "Damping Tail" system. 3. Composite foundation to equalize deformations under different loading conditions: We studied the vertical and horizontal deformations using sway-rocking and 3D FEM models including the ground, and applied multi-stage diameter-enlarged piles to the tower and a mat foundation to the podium to keep the foundations from torsional deformations and ensure structural safety.

A Study on the Suppression of Instability Whirl of a Foil Bearing for High-Speed Turbomachinery beyond the Bending Critical Speed (고속 회전 터보 기기용 포일 베어링의 불안정 진동 제진에 관한 연구)

  • Lee, Yong-Bok;Kim, Tae-Ho;Kim, Chang-Ho;Lee, Nam-Soo;Choi, Dong-Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.7-14
    • /
    • 2002
  • A new foil bearing, ViscoElastic Foil Bearing(VEFB) is suggested with the need for a high damping foil bearing. Sufficient damping capacity is a key technical hurdle to super-bending-critical operation as well as widespread use of foil bearings into turbomachinery. The super-bending-critical operation of the conventional bump foil bearing and the VEFB is examined, as well as the structural dynamic characteristics. The structural dynamic test results show that the equivalent viscous damping of the VEFB is much larger than that of the bump bearing, and that the structural dynamic stiffness of the VEFB is comparable or larger than that of the bump bearing. The results of super-bending-critical operation of the VEFB indicate that the enhanced structural damping of the viscoelastic foil dramatically reduces the vibration near the bending critical speed. With the help of increased damping resulting from the viscoelasticity, the suppression of the asynchronous orbit is possible beyond the bending critical speed.

Transient soil-structure interaction with consistent description of radiation damping

  • Zulkifli, Ediansjah;Ruge, Peter
    • Structural Engineering and Mechanics
    • /
    • v.33 no.1
    • /
    • pp.47-66
    • /
    • 2009
  • Radiation damping due to wave propagation in unbounded domains may cause a significant reduction of structural vibrations when excited near resonance. Here a novel matrix-valued algebraic Pad$\acute{e}$-like stiffness formulation in the frequency-domain and a corresponding state equation in the time domain are elaborated for a soil-structure interaction problem with a layered soil excited in a transient manner by a flexible rotor during startup and shutdown. The contribution of radiation damping caused by a soil-layer upon a rigid bedrock is characterized by the corresponding amount of critical damping as it is used in structural dynamics.

Field measurement of damping in industrial chimneys and towers

  • Cho, K.P.;Tamura, Y.;Itoh, T.;Narikawa, M.;Uchikawa, Y.;Nishimura, I.;Ohshima, Y.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.449-457
    • /
    • 2001
  • In the design of industrial chimneys and towers, structural engineers must assume a level of the inherent damping in the structures. In order to better estimate the dynamic response of those structures, actual damping was measured from wind-induced vibration signals of chimneys and towers and its characteristics with respect to the response levels, the structural systems, and the wind direction were discussed. Damping ratio and natural frequency for three chimneys and two towers were calculated using random decrement technique.

A kind of NiTi-wire shape memory alloy damper to simultaneously damp tension, compression and torsion

  • Han, Yu-Lin;Yin, Hai-Yang;Xiao, Er-Tian;Sun, Zhi-Lin;Li, Ai-Qun
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.241-262
    • /
    • 2006
  • NiTi-wire shape memory alloy (SMA) dampers, that utilize NiTi SMA wires to simultaneously damp tension, compression and torsion, was developed for structural control implementation in this study. First, eight reduced-scale NiTi-wire SMA dampers were constructed. Then tension, compression and torsion experiments using the eight reduced-scale NiTi-wire SMA dampers of different specification were done. The experimental results revealed all of the eight reduced-scale NiTi-wire SMA dampers had the ability to simultaneously supply tension-compression damping and torsion damping. Finally, mechanics analysis of the NiTi-wire SMA dampers was done based on a model of the SMA-wire restoring force and on tension-compression and torsion damping analysis. The damping analytical results were found to be similar to the damping experimental results.

Reduction of Structure-borne Noises in a Two-Dimensional Cavity using Optimal Treatment of Damping Materials (제진재의 최적배치를 통한 이차원 공동의 구조기인소음 저감)

  • Lee, Doo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1581-1587
    • /
    • 2006
  • An optimization formulation is proposed to minimize sound pressures in a two-dimensional cavity by controlling the attachment area of viscoelastic unconstrained damping materials. For the analysis of structural- acoustic systems, a hybrid approach that uses finite elements for structures and boundary elements for cavity is adopted. Four-parameter fractional derivative model is used to accurately represent dynamic characteristics of the viscoelastic materials with respect to frequency and temperature. Optimal layouts of the unconstrained damping layer on structural wall of cavity are identified according to temperatures and the amount of damping material by using a numerical search algorithm.

Damping Analysis of Pretwisted Composite Plates with Viscoelastic Layer (점탄성층을 갖는 비틀린 복합재판의 감쇠해석)

  • 이덕규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.39-44
    • /
    • 2002
  • A three node triangular element with drilling rotations incorporating Improved Layerwise Zig-zag Theory(HZZT) is developed to analyze the vibration of spinning pretwisted composite blades with embedded damping layer. Matching conditions at the interfaces between the damping material and the border material are enforced by setting the shear forces matched and different shear strains along the interfaces. The natural frequencies and modal loss factors of cantilevered pretwisted composite blade with damping core are calculated with the present triangular element enforcing the matching conditions and compared to experimental results and MSC/NASTRAN results using a layered combination of plate and solid elements.

  • PDF