• 제목/요약/키워드: Structural Control System

검색결과 1,480건 처리시간 0.025초

Robust decentralized control of structures using the LMI Hcontroller with uncertainties

  • Raji, Roya;Hadidi, Ali;Ghaffarzadeh, Hosein;Safari, Amin
    • Smart Structures and Systems
    • /
    • 제22권5호
    • /
    • pp.547-560
    • /
    • 2018
  • This paper investigates the operation of the $H_{\infty}$ static output-feedback controller to reduce dynamic responses under seismic excitation on the five-story and benchmark 20 story building with parametric uncertainties. Linear matrix inequality (LMI) control theory is applied in this system and then to achieve the desired LMI formulations, some transformations of the LMI variables is used. Conversely uncertainties due to material properties, environmental loads such as earthquake and wind hazards make the uncertain system. This problem and its effects are studied in this research. Also to decrease the transition of large amount of data between sensors and controller, avoiding the disruption of whole control system and economy problems, the operation of the decentralized controllers is investigated in this paper. For this purpose the comparison between the performance of the centralized, fully decentralized and partial decentralized controllers in uncoupled and coupled cases is performed. Also, the effect of the changing the number of stories in substructures is considered. Based on the numerical results, the used control algorithm is very robust against the parametric uncertainties and structural responses are decreased considerably in all the control cases but partial decentralized controller in coupled form gets the closest results to the centralized case. The results indicate the high applicability of the used control algorithm in the tall shear buildings to reduce the structural responses and its robustness against the uncertainties.

Piecewise exact solution for seismic mitigation analysis of bridges equipped with sliding-type isolators

  • Tsai, C.S.;Lin, Yung-Chang;Chen, Wen-Shin;Chiang, Tsu-Cheng;Chen, Bo-Jen
    • Structural Engineering and Mechanics
    • /
    • 제35권2호
    • /
    • pp.205-215
    • /
    • 2010
  • Recently, earthquake proof technology has been widely applied to both new and existing structures and bridges. The analysis of bridge systems equipped with structural control devices, which possess large degrees of freedom and nonlinear characteristics, is a result in time-consuming task. Therefore, a piecewise exact solution is proposed in this study to simplify the seismic mitigation analysis process for bridge systems equipped with sliding-type isolators. In this study, the simplified system having two degrees of freedom, to reasonably represent the large number of degrees of freedom of a bridge, and is modeled to obtain a piecewise exact solution for system responses during earthquakes. Simultaneously, we used the nonlinear finite element computer program to analyze the bridge responses and verify the accuracy of the proposed piecewise exact solution for bridge systems equipped with sliding-type isolators. The conclusions derived by comparing the results obtained from the piecewise exact solution and nonlinear finite element analysis reveal that the proposed solution not only simplifies the calculation process but also provides highly accurate seismic responses of isolated bridges under earthquakes.

경량화 소형 위그선 구조 예비 설계에 관한 연구 (Study on Preliminary Structural Design of Light Weight Small Scale WIG Craft)

  • 공창덕;박현범;김주일;이승현;윤재휘
    • 항공우주시스템공학회지
    • /
    • 제1권1호
    • /
    • pp.36-44
    • /
    • 2007
  • This study was performed on preliminary structural design of a small scale WIG craft which has been developed as a next generation high speed maritime transportation system in Korea. A composite structure design using the foam-sandwich for main wing and tail fins and the honeycomb sandwich and skin-stringer-ring frame for fuselage was applied for weight reduction as well as structural stability. A commercial FEM code, NASTRAN for was utilized to confirm the structural safety for the reiterate design modifications to meet design requirements including the target weight. Each main wing was jointed with the fuselage by eight high strength insert bolts for easy assembling and disassembling as well as for assuring the required 20 years service life. For control surface structural design, the channel type spar, the foam sandwich skin and the lug joint were adopted.

  • PDF

Using the pendulum column as an isolator by reducing the gravity effect

  • Abdallah Azizi;Majid Barghian
    • Earthquakes and Structures
    • /
    • 제25권4호
    • /
    • pp.297-305
    • /
    • 2023
  • The conventional method of structural seismic design was based on increasing structural capacity, which usually didn't reduce earthquake seismic effects. By changing the philosophy of structure design, technologies such as passive seismic control have been used in structures. So far, a large number of seismic isolation systems have been introduced to dissipate earthquake energy that is applied to a structure. These systems act against earthquakes rather than increasing the strength and capacity of the structure. In the present paper, a suspended column called a "pendulum column" is investigated, and a new idea has been considered to improve the performance of the pendulum column isolator by changing the gravity effect by adding a spring under the isolator system. The behavior of the studied isolator system has been researched. Then the isolator system was investigated under different earthquakes and compared with a common pendulum column isolator. The results show that changing the gravity effect has an effective role in the response of the system by reducing the system stiffness. Equations for the system showed that even in a special state, complete isolation is possible. Finally, the tested model verified the theory.

Assessment of a dual isolation system with base and vertical isolation of the upper portion

  • Sasan Babaei;Panam Zarfam;Abdolreza Sarvghad Moghadam;Seyed Mehdi Zahrai
    • Structural Engineering and Mechanics
    • /
    • 제88권3호
    • /
    • pp.263-271
    • /
    • 2023
  • Base isolation is a widely used technique for the seismic control of structures as it reduces the structural seismic demand. However, displacement of the isolation layer is not economically feasible in congested urban areas. To resolve the issue, an innovative system is proposed here to isolate both horizontally at the base and vertically in the upper portion of the structure. A simplified linear three degree-of-freedom (3DOF) model of the system that considers the mass and stiffness ratios of the substructure has been introduced and analyzed in MATLAB by spectrum analysis. The 3DOF model results revealed that, when the period of the soft substructure reaches 2.5 times that of the stiff substructure, the isolation and the lower substructure responses decrease by 65% and 51%, respectively. Time-history analysis of a MDOF system at three frequency ratios under a wide range of ground motions indicated that, at the expense of accepting a certain large drift by the soft substructure in the upper portion of the structure, base isolation displacement can be decreased by 10%.

친환경 건축의 통합설계를 위한 건축 계획적 접근방법에 관한 연구 (A Study on The Architectural Plan Access Method for The Integrated Design of The Environmentally Friendly Architecture)

  • 조성현;김철규
    • 한국디지털건축인테리어학회논문집
    • /
    • 제10권3호
    • /
    • pp.79-86
    • /
    • 2010
  • From the research which sees the building which uses a natural control method with ecological architecture, continuity tried to divide the building which uses a physical control method with sustainable architecture. Ecological architecture analyzes the microclimate of the area and applies mining and natural ventilation leads and that the interior environment controls, the condition of the site actively and there is a possibility of seeing. Also sustainable architecture which is possible to lead and recycling and reuse of the resources and energy cyclic process of the construction resources to lead and the interior environment to control. Therefore the case where the facility system and structural system become integrated design organically in natural circulating method is many. Specially the sunshade system and double skin system are combined and structural system of the building and there is a possibility of having the envelope which form is feature. Today the buildings lead and the system integration process where the integral parts are systematic is demanded the interior environment which and an external form and that, they make they are there is a possibility of seeing. the environmental building which hits joins in with natural control method and the structure and facility system are integrated and has the tendency which is developed and there is a possibility of saying that a meaning with the alternative construction will be able to reduce the resources and an energy.

A system model for reliability assessment of smart structural systems

  • Hassan, Maguid H.M.
    • Structural Engineering and Mechanics
    • /
    • 제23권5호
    • /
    • pp.455-468
    • /
    • 2006
  • Smart structural systems are defined as ones that demonstrate the ability to modify their characteristics and/or properties in order to respond favorably to unexpected severe loading conditions. The performance of such a task requires a set of additional components to be integrated within such systems. These components belong to three major categories, sensors, processors and actuators. It is wellknown that all structural systems entail some level of uncertainty, because of their extremely complex nature, lack of complete information, simplifications and modeling. Similarly, sensors, processors and actuators are expected to reflect a similar uncertain behavior. As it is imperative to be able to evaluate the impact of such components on the behavior of the system, it is as important to ensure, or at least evaluate, the reliability of such components. In this paper, a system model for reliability assessment of smart structural systems is outlined. The presented model is considered a necessary first step in the development of a reliability assessment algorithm for smart structural systems. The system model outlines the basic components of the system, in addition to, performance functions and inter-relations among individual components. A fault tree model is developed in order to aggregate the individual underlying component reliabilities into an overall system reliability measure. Identification of appropriate limit states for all underlying components are beyond the scope of this paper. However, it is the objective of this paper to set up the necessary framework for identifying such limit states. A sample model for a three-story single bay smart rigid frame, is developed in order to demonstrate the proposed framework.

A frequency tracking semi-active algorithm for control of edgewise vibrations in wind turbine blades

  • Arrigan, John;Huang, Chaojun;Staino, Andrea;Basu, Biswajit;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • 제13권2호
    • /
    • pp.177-201
    • /
    • 2014
  • With the increased size and flexibility of the tower and blades, structural vibrations are becoming a limiting factor towards the design of even larger and more powerful wind turbines. Research into the use of vibration mitigation devices in the turbine tower has been carried out but the use of dampers in the blades has yet to be investigated in detail. Mitigating vibrations will increase the design life and hence economic viability of the turbine blades and allow for continual operation with decreased downtime. The aim of this paper is to investigate the effectiveness of Semi-Active Tuned Mass Dampers (STMDs) in reducing the edgewise vibrations in the turbine blades. A frequency tracking algorithm based on the Short Time Fourier Transform (STFT) technique is used to tune the damper. A theoretical model has been developed to capture the dynamic behaviour of the blades including the coupling with the tower to accurately model the dynamics of the entire turbine structure. The resulting model consists of time dependent equations of motion and negative damping terms due to the coupling present in the system. The performances of the STMDs based vibration controller have been tested under different loading and operating conditions. Numerical analysis has shown that variation in certain parameters of the system, along with the time varying nature of the system matrices has led to the need for STMDs to allow for real-time tuning to the resonant frequencies of the system.

모달필터 성능을 고려한 센서의 최적위치 (Sensor Placement in Structural Vibration Control For the Performance of Modal Filter)

  • 황재혁;김준수;백승호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.308-315
    • /
    • 1997
  • In this study, the effect of modal filter error on the vibration control characteristics of flexible structures is analyzed for IMSC(Independent Modal Space Control), and optimal sensor placement in the structural vibration control with consideration of performance of modal filter has been studied. An Lyapunov asymptotic stability condition has been derived, which depends on the magnitude of the modal filter errors. The extent of the response deviation of the closed-loop system is also derived and evaluated using operator techniques. A sensor placement technique has also been suggested to maximize the performance of the modal filter. It has been found by a series of simulation that the suggested sensor placement technique is very effective on the determination of the number and placement of sensors of modal filter in the structural vibration control.

  • PDF

A hybrid seismic response control to improve performance of a two-span bridge

  • Heo, Gwanghee;Kim, Chunggil;Jeon, Seunggon;Lee, Chinok;Jeon, Joonryong
    • Structural Engineering and Mechanics
    • /
    • 제61권5호
    • /
    • pp.675-684
    • /
    • 2017
  • In this paper, a hybrid seismic response control (HSRC) system was developed to control bridge behavior caused by the seismic load. It was aimed at optimum vibration control, composed of a rubber bearing of passive type and MR-damper of semi-active type. Its mathematical modeling was driven and applied to a bridge model so as to prove its validity. The bridge model was built for the experiment, a two-span bridge of 8.3 meters in length with the HSRC system put up on it. Then, inflicting the EI Centro seismic load on it, shaking table tests were carried out to confirm the system's validity. The experiments were conducted under the basic structure state (without an MR-damper applied) first, and then under the state with an MR-damper applied. It was also done under the basic structure state with a reinforced rubber bearing applied, then the passive on/off state of the HSRC system, and finally the semi-active state where the control algorithm was applied to the system. From the experiments, it was observed that pounding rather increased when the MR-damper alone was applied, and also that the application of the HSRC system effectively prevented it from occurring. That is, the experiments showed that the system successfully mitigated structural behavior by 70% against the basic structure state, and, further, when control algorithm is applied for the operation of the MR-damper, relative displacement was found to be effectively mitigated by 80%. As a result, the HSRC system was proven to be effective in mitigating responses of the two-span bridge under seismic load.