• 제목/요약/키워드: Structural Control System

검색결과 1,491건 처리시간 0.033초

Decentralized civil structural control using real-time wireless sensing and embedded computing

  • Wang, Yang;Swartz, R. Andrew;Lynch, Jerome P.;Law, Kincho H.;Lu, Kung-Chun;Loh, Chin-Hsiung
    • Smart Structures and Systems
    • /
    • 제3권3호
    • /
    • pp.321-340
    • /
    • 2007
  • Structural control technologies have attracted great interest from the earthquake engineering community over the last few decades as an effective method of reducing undesired structural responses. Traditional structural control systems employ large quantities of cables to connect structural sensors, actuators, and controllers into one integrated system. To reduce the high-costs associated with labor-intensive installations, wireless communication can serve as an alternative real-time communication link between the nodes of a control system. A prototype wireless structural sensing and control system has been physically implemented and its performance verified in large-scale shake table tests. This paper introduces the design of this prototype system and investigates the feasibility of employing decentralized and partially decentralized control strategies to mitigate the challenge of communication latencies associated with wireless sensor networks. Closed-loop feedback control algorithms are embedded within the wireless sensor prototypes allowing them to serve as controllers in the control system. To validate the embedment of control algorithms, a 3-story half-scale steel structure is employed with magnetorheological (MR) dampers installed on each floor. Both numerical simulation and experimental results show that decentralized control solutions can be very effective in attaining the optimal performance of the wireless control system.

Optimal Structural Design for Flexible Space Structure with Control System Based on LMI

  • Park, Jung-Hyen;Cho, Kyeum-Rae
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.75-82
    • /
    • 2002
  • A simultaneous optimal design problem of structural and control systems is discussed by taking a 3-D truss structure as an object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider a minimum weight design problem for structural system and disturbance suppression problem for the control system. The structural objective function is the structural weight and the control objective function is $H_{\infty}$ norm from the disturbance input to the controlled output in the closed-loop system. The design variables are cross sectional areas of the truss members. The conditions for the existence of controller are expressed in terms of linear matrix inequalities (LMI) By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken. We showed in this paper the validity of simultaneous optimal design of structural and control systems.

구조-제어시스템의 동시최적설계를 위한 유전자알고리즘 및 Goal Programming 기법 (Genetic Algorithm and Goal Programming Technique for Simultaneous Optimal Design of Structural Control System)

  • 옥승용;박관순;고현무
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.497-504
    • /
    • 2003
  • An optimal design method for hybrid structural control system of building structures subject to earthquake excitation is presented in this paper. Designing a hybrid structural control system nay be defined as a process that optimizes the capacities and configuration of passive and active control systems as well as structural members. The optimal design proceeds by formulating the optimization problem via a multi-stage goal programming technique and, then, by finding reasonable solution to the optimization problem by means of a goal-updating genetic algorithm. The process of the integrated optimization design is illustrated by a numerical simulation of a nine-story building structure subject to earthquake excitation. The effectiveness of the proposed method is demonstrated by comparing the optimally designed results with those of a hybrid structural control system where structural members, passive and active control systems are uniformly distributed.

  • PDF

Decentralized energy market-based structural control

  • Lynch, Jerome Peter;Law, Kincho H.
    • Structural Engineering and Mechanics
    • /
    • 제17권3_4호
    • /
    • pp.557-572
    • /
    • 2004
  • Control systems are used to limit structural lateral deflections during large external loads such as winds and earthquakes. Most recently, the semi-active control approach has grown in popularity due to inexpensive control devices that consume little power. As a result, recently designed control systems have employed many semi-active control devices for the control of a structure. In the future, it is envisioned that structural control systems will be large-scale systems defined by high actuation and sensor densities. Decentralized control approaches have been used to control large-scale systems that are too complex for a traditional centralized approach, such as linear quadratic regulation (LQR). This paper describes the derivation of energy market-based control (EMBC), a decentralized approach that models the structural control system as a competitive marketplace. The interaction of free-market buyers and sellers result in an optimal allocation of limited control system resources such as control energy. The Kajima-Shizuoka Building and a 20-story benchmark structure are selected as illustrative examples to be used for comparison of the EMBC and centralized LQR approaches.

Chattering-free sliding mode control with a fuzzy model for structural applications

  • Baghaei, Keyvan Aghabalaei;Ghaffarzadeh, Hosein;Hadigheh, S. Ali;Dias-da-Costa, Daniel
    • Structural Engineering and Mechanics
    • /
    • 제69권3호
    • /
    • pp.307-315
    • /
    • 2019
  • This paper proposes a chattering-free sliding mode control (CFSMC) method for seismically excited structures. The method is based on a fuzzy logic (FL) model applied to smooth the control force and eliminate chattering, where the switching part of the control law is replaced by an FL output. The CFSMC is robust and keeps the advantages of the conventional sliding mode control (SMC), whilst removing the chattering and avoiding the time-consuming process of generating fuzzy rule basis. The proposed method is tested on an 8-story shear frame equipped with an active tendon system. Results indicate that the new method not only can effectively enhance the seismic performance of the structural system compared to the SMC, but also ensure system stability and high accuracy with less computational cost. The CFSMC also requires less amount of energy from the active tendon system to produce the desired structural dynamic response.

동적능동제어시스템의 FORM기반 구조신뢰성해석 (FORM-based Structural Reliability Analysis of Dynamical Active Control System)

  • 옥승용
    • 한국안전학회지
    • /
    • 제28권1호
    • /
    • pp.74-80
    • /
    • 2013
  • This study describes structural reliability analysis of actively-controlled structure for which random vibration analysis is incorporated into the first-order reliability method (FORM) framework. The existing approaches perform the reliability analysis based on the RMS response, whereas the proposed study uses the peak response for the reliability analysis. Therefore, the proposed approach provides us a meaningful performance measure of the active control system, i.e., realistic failure probability. In addition, it can deal with the uncertainties in the system parameters as well as the excitations in single-loop reliability analysis, whereas the conventional random vibration analysis requires double-loop reliability analysis; one is for the system parameters and the other is for stochastic excitations. The effectiveness of the proposed approach is demonstrated through a numerical example where the proposed approach shows fast and accurate reliability (or inversely failure probability) assessment results of the dynamical active control system against random seismic excitations in the presence of parametric uncertainties of the dynamical structural system.

터널 굴착기 유압시스템용 유량 제어 블록 개발 (Development of Flow Control Block for Hydraulic System of Tunnel Boring Machine)

  • 이재동;임상진
    • 한국기계기술학회지
    • /
    • 제20권6호
    • /
    • pp.929-935
    • /
    • 2018
  • This paper develops a flow control block for a hydraulic system of a tunnel boring machine. The flow control block is a necessary component to ensure stability in the operation of the hydraulic system. In order to know the pressure distribution of the flow control block, the flow analysis was performed using the ANSYS-CFX. It was confirmed that the pressure and flow rate were normally supplied to the hydraulic system even if one of the four ports of the flow control block was not operated. In order to evaluate the structural stability of the flow control block, structural analysis was performed using the ANSYS WORKBENCH. As a result, the safety factor of the flow control block is 1.54 and the structural stability is secured.

Structual Design of a Building with High Damping Provided by Deformation Amplification Mechanisms and Tuned Viscous Mass Damper

  • Mizuki Shigematsu;Takaaki Udagawa;Satoru Nagase
    • 국제초고층학회논문집
    • /
    • 제12권3호
    • /
    • pp.215-224
    • /
    • 2023
  • This paper presents the structural design and response control system of the JR MEGURO MARC building, a 70 meters high office building with steel structure located in Tokyo (Figure 1). In order to achieve high earthquake resistance and useable office space, this building integrates a centralized response control system with deformation amplification mechanisms and tuned viscous mass dampers on the lower floor. Moreover, buckling-restrained braces (BRB) are installed on the upper floors to increase the effectiveness of centralized response control system and to reduce damage of the main frames in the event of a major earthquake. It features an efficient centralized response control system by amplifying the deformation of the dampers without creating a soft story.

하중의 불확실성을 고려한 선형구조제어 시스템의 최적설계 (Optimal Design of a Linear Structural Control System Considering Loading Uncertainties)

  • 박원석;박관순
    • 한국지진공학회논문집
    • /
    • 제15권2호
    • /
    • pp.1-9
    • /
    • 2011
  • 불확실성을 가지는 하중의 변동성을 고려한 구조제어시스템의 최적설계방법에 관하여 연구하였다. 일반적인 제어시스템의 설계 문제가 구조물과 제어시스템간의 상호작용 고려하여 구조-제어 시스템을 최적화이나, 이 연구에서는 하중-구조물-제어 시스템간의 상호작용에 대한 최적설계방법에 관하여 다루었다. 구조물의 응답을 최대화하는 하중과, 이를 최소화하는 구조제어시스템을 동시에 구하는 최대-최소문제(Min-max Problem)를 정식화하고, 최적설계변수를 효율적으로 찾는 방법으로 병렬진화 알고리즘을 이용하여 불확실성이 존재하는 선형구조제어시스템의 최적설계방법을 제시하였다. 지진하중을 받는 구조물의 제진시스템 설계 예 및 수치해석을 통하여 연구한 방법의 타당성을 검증하였다.

Vibration control of 3D irregular buildings by using developed neuro-controller strategy

  • Bigdeli, Yasser;Kim, Dookie;Chang, Seongkyu
    • Structural Engineering and Mechanics
    • /
    • 제49권6호
    • /
    • pp.687-703
    • /
    • 2014
  • This paper develops a new nonlinear model for active control of three-dimensional (3D) irregular building structures. Both geometrical and material nonlinearities with a neuro-controller training algorithm are applied to a multi-degree-of-freedom 3D system. Two dynamic assembling motions are considered simultaneously in the control model such as coupling between torsional and lateral responses of the structure and interaction between the structural system and the actuators. The proposed control system and training algorithm of the structural system are evaluated by simulating the responses of the structure under the El-Centro 1940 earthquake excitation. In the numerical example, the 3D three-story structure with linear and nonlinear stiffness is controlled by a trained neural network. The actuator dynamics, control time delay and incident angle of earthquake are also considered in the simulation. Results show that the proposed control algorithm for 3D buildings is effective in structural control.