• 제목/요약/키워드: Structural Constraint

검색결과 395건 처리시간 0.025초

위상 최적화 방법에 의해 설계된 대구경 구조물 (The Large Optical Structure Designed by Topology Optimization Methodology)

  • 이정익
    • 한국산학기술학회논문지
    • /
    • 제10권9호
    • /
    • pp.2179-2182
    • /
    • 2009
  • 최근, 광학기계시스템에 새로운 구조 모델은 저비용, 고성능 및 품질의 개념설계에서 출발해야 할 필요성이 있다. 이런 관점에서, 기계적 구조의 개념설계와 연관된 구조적-위상적 형상은 구조적 강성과 감량과 같은 시스템 성능에 큰 영향을 끼친다. 본 연구에서는, 최적설계방법이 대구경 구조물의 설계단계에 제시되었다. 먼저, 위상 최적화법을 이용하여 구조물의 최적 배열과 보강방안을 얻었고, 사이즈 최적화와 다분야 최적기법을 사용한 세부 설계를 수행하였다. 그 일례로, 이 방법들을 대구경 구조물 설계에 적용하였다.

Multi-objective BESO topology optimization for stiffness and frequency of continuum structures

  • Teimouri, Mohsen;Asgari, Masoud
    • Structural Engineering and Mechanics
    • /
    • 제72권2호
    • /
    • pp.181-190
    • /
    • 2019
  • Topology optimization of structures seeking the best distribution of mass in a design space to improve the structural performance and reduce the weight of a structure is one of the most comprehensive issues in the field of structural optimization. In addition to structures stiffness as the most common objective function, frequency optimization is of great importance in variety of applications too. In this paper, an efficient multi-objective Bi-directional Evolutionary Structural Optimization (BESO) method is developed for topology optimization of frequency and stiffness in continuum structures simultaneously. A software package including a Matlab code and Abaqus FE solver has been created for the numerical implementation of multi-objective BESO utilizing the weighted function method. At the same time, by considering the weaknesses of the optimized structure in single-objective optimizations for stiffness or frequency problems, slight modifications have been done on the numerical algorithm of developed multi-objective BESO in order to overcome challenges due to artificial localized modes, checker boarding and geometrical symmetry constraint during the progressive iterations of optimization. Numerical results show that the proposed Multiobjective BESO method is efficient and optimal solutions can be obtained for continuum structures based on an existent finite element model of the structures.

Shaking table test of liquid storage tank with finite element analysis considering uplift effect

  • Zhou, Junwen;Zhao, Ming
    • Structural Engineering and Mechanics
    • /
    • 제77권3호
    • /
    • pp.369-381
    • /
    • 2021
  • The seismic responses of elevated tanks considering liquid-structure interaction are presented under horizontal earthquake. The scaled model tank is fabricated to study the dynamic responses of anchored tank and newly designed uplift tank with replaced dampers. The natural frequencies for structural mode are obtained by modal analysis. The dynamic responses of tanks are completed by finite element method, which are compared with the results from experiment. The displacement parallel and perpendicular to the excitation direction are both gained as well as structural acceleration. The strain of tank walls and the axial strain of columns are also obtained afterwards. The seismic responses of liquid storage tank can be calculated by the finite element model effectively and the results match well with the one measured by experiment. The aim is to provide a new type of tank system with vertical constraint relaxed which leads to lower stress level. With the liquid volume increasing, the structural fundamental frequency has a great reduction and the one of uplift tank are even smaller. Compared with anchored tank, the displacement of uplift tank is magnified, the strain for tank walls and columns parallel to excitation direction reduces obviously, while the one perpendicular to earthquake direction increases a lot, but the values are still small. The stress level of new tank seems to be more even due to uplift effect. The new type of tank can realize recoverable function by replacing dampers after earthquake.

외팔보 구조의 슬림형 TV 월마운트암의 최적설계 (Optimal Design of Slim TV Wall Mount Arm with Cantilever Structure)

  • 장운근
    • 한국산업융합학회 논문집
    • /
    • 제14권4호
    • /
    • pp.167-172
    • /
    • 2011
  • This paper investigated optimal design for slim wall mount arm for flat TV. Recently the number of flat TV sets in use went on increasing in TV market. As the flat TV sets are getting common, consumers came to need another requirements like aesthetic factor besides display performances. As the new TV sets tend to be slimmer due to aesthetic design, Wall mount also requires to be slimmer for aesthetic balance. Slim structures, however, are vulnerable to structural rigidity. In this study, slim wall mount arm has been designed by 3D CAD and DOE (Design of Experiments) and finite element analysis for optimal structural design were carried out to determine the design variables for minimize working stress of wall mount arm. Finally two optimal design conditions were selected through DOE and FEM and one of those was chosen under constraint of minimizing blanking developed length.

열전도 문제에 대한 설계 민감도 해석과 위상 최적 설계 (Design Sensitivity Analysis and Topology Optimization of Heat Conduction Problems)

  • 김민근;조선호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.127-134
    • /
    • 2004
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis (DSA) method applicable to heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume, respectively. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with finite difference ones, requiring less than 0.3% of CPU time far the finite differencing. Also, the topology optimization yields physical meaningful results.

  • PDF

열전도 문제에 대한 3 차원 구조물의 위상 최적설계 (Topology Design Optimization of Three Dimensional Structures for Heat Conduction Problems)

  • 문세준;조선호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.327-334
    • /
    • 2005
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis (DSA) method applicable to 3-Dimensional heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume, respectively, Through several numerical examples, the developed DSA method is verified to yield efficiency and accurate sensitivity results compared with finite difference ones. Also, the topology optimization yields physical meaningful results.

  • PDF

확장 B-spline 기저 함수를 이용한 레벨셋 기반의 형상 최적 설계 (Level Set based Shape Optimization using Extended B-spline Bases)

  • 김민근;조선호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.391-396
    • /
    • 2008
  • A level set based topological shape optimization using extended B-spline basis functions is developed for steady state heat conduction problems. The only inside of complicated domain is identified by the level set functions and taken into account in computation. The solution of Hamilton-Jacobi equation leads to an optimal shape according to the normal velocity field determined from the sensitivity analysis, minimizing a thermal compliance while satisfying a volume constraint. To obtain exact shape sensitivity, the precise normal and curvature of geometry need to be determined using the level set and B-spline basis functions. The nucleation of holes is possible whenever and wherever necessary during the optimization using a topological derivative concept.

  • PDF

An Analytical Approach for Structural Synthesis of Substructures

  • Eun, Hee-Chang;Park, Sang-Yeol;Lee, Eun-Taik
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1529-1536
    • /
    • 2004
  • A structure is broken down into a number of substructures by means of the finite element method and the substructures are synthesized for the complete structure. The divided substructures take two types: fixed-free and free-free elements. The flexibility and stiffness matrices of the free-free elements are the Moore-Penrose inverse of each other. Thus, it is not easy to determine the equilibrium equations of the complete structure composed of two mixed types of substructures. This study provides the general form of equilibrium equation of the entire structure through the process of assembling the equilibrium equations of substructures with end conditions of mixed types. Applications demonstrate that the proposed method is effective in the structural analysis of geometrically complicated structures.

특성함수를 이용한 제한조건이 있는 천장크레인의 강건최적설계 (Robust Optimization Design of Overhead Crane with Constraint using the Characteristic Functions)

  • 홍도관;최석창;안찬우
    • 한국정밀공학회지
    • /
    • 제21권2호
    • /
    • pp.160-167
    • /
    • 2004
  • The correlation between the object function and the design parameter is shown on this paper by using the characteristic function for the mixed result of the structural analysis, the buckling analysis and the table of orthogonal array according to the original overhead crane's dimensional change. About the above two functions, the effectiveness of design change according to the change of design parameters could be estimated. Also, the overhead crane's weight is reduced up to 10.55 percent maintaining the structural stability according to the thickness of plate.

강상판교의 다단계 최적설계 (Multi-level Optimization for Orthotropic Steel Deck Bridges)

  • 조효남;정지승;민대홍
    • 한국전산구조공학회논문집
    • /
    • 제14권2호
    • /
    • pp.237-247
    • /
    • 2001
  • 강상판교는 부재수가 많고 구조적 거동이 복잡하여 재래적인 단일수준 (CSL) 알고리즘을 이용하여 최적화하는 것이 매우 어렵기 때문에 본 연구에서는 강상판교를 효율적으로 최적화하기 위해 다단계 최적설계 (MLDS) 알고리즘이 제안되었다. 강상판교를 주형과 강상판으로 나누기 위해 등위법이 사용되었고, 시스템 최적화를 위하여 설계 변수를 줄이는 분해법이 사용되었다. 효율적인 최적설계를 위해 다단계 최적설계 알고리즘은 제약조건 소거기법(Constraint Deletion)과 응력 재해석 같은 근사화 기법을 도입하였다. 변위해석을 위한 제약조건 소거기법은 교량의 최적화에 효율적인 것으로 검증되었고, 제안된 응력 재해석 기법 또한 설계민감도 해석을 필요로 하지 않으므로 매우 효율적이다. MLDS 알고리즘의 적용성과 강건성은 다양한 수치예제를 사용하여 기존의 단일수준 알고리즘과 비교하였다.

  • PDF