• Title/Summary/Keyword: Structural Changes Test

Search Result 317, Processing Time 0.025 seconds

Statistical damage classification method based on wavelet packet analysis

  • Law, S.S.;Zhu, X.Q.;Tian, Y.J.;Li, X.Y.;Wu, S.Q.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.4
    • /
    • pp.459-486
    • /
    • 2013
  • A novel damage classification method based on wavelet packet transform and statistical analysis is developed in this study for structural health monitoring. The response signal of a structure under an impact load is normalized and then decomposed into wavelet packet components. Energies of these wavelet packet components are then calculated to obtain the energy distribution. Statistical similarity comparison based on an F-test is used to classify the structure from changes in the wavelet packet energy distribution. A statistical indicator is developed to describe the damage extent of the structure. This approach is applied to the test results from simply supported reinforced concrete beams in the laboratory. Cases with single and two damages are created from static loading, and accelerations of the structure from under impact loads are analyzed. Results show that the method can be used with no reference baseline measurement and model for the damage monitoring and assessment of the structure with alarms at a specified significance level.

Non-destructive assessment of carbonation in concrete using the ultrasonic test: Influenced parameters

  • Javad Royaei;Fatemeh Nouban;Kabir Sadeghi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.301-308
    • /
    • 2024
  • Concrete carbonation is a continuous and slow process from the outside to the inside, in which its penetration slows down with the increased depth of carbonation. In this paper, the results of the evaluation of the measurement of concrete carbonation depth using a non-destructive ultrasonic testing method are presented. According to the results, the relative nonlinear parameter caused more sensitivity in carbonation changes compared to Rayleigh's fuzzy velocity. Thus, the acoustic nonlinear parameter is expected to be applied as a quantitative index to recognize carbonation effects. In this research, combo diagrams were developed based on the results of ultrasonic testing and the experiment to determine carbonation depth using a phenolphthalein solution, which could be considered as instructions in the projects involving non-destructive ultrasonic test methods. The minimum and maximum accuracy of this method were 89% and 97%, respectively, which is a reasonable range for operational projects. From the analysis performed, some useful expressions are found by applying the regression analysis for the nonlinearity index and the carbonation penetration depth values as a guideline.

Changes in Absorbency and Drying Speed of a Quick-drying Knit Fabric by Repeated Laundering

  • Roh, Eui-Kyung;Kim, Eun-Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.12
    • /
    • pp.2062-2072
    • /
    • 2010
  • This research evaluates the change of the water absorbency and drying speed of a quick-drying knit fabric by repeated laundering and laundering conditions and investigates the influence of laundering conditions on the functional properties of the knit fabric. Four factors of laundering conditions were studied: detergent, water hardness, water temperature, and frequency of rotation. Knit fabrics were washed for 25 laundering cycles in a drum-type washing machine with nine different laundering conditions derived from an orthogonal array. The properties of knit fabrics were measured with a drop absorption test, a strip test, and a drying time test. Relaxation shrinkage pointed to a change in the structural characteristics of the knit fabric. Wetting time was faster and wickability was greater in the knit fabrics that underwent 5 laundering cycles; in addition, there were no obvious changes in wetting time and wickability. The detergent was the most important factor in wetting time (40.4%) and wickability (60% or above). Water hardness, water temperature and RPM had less of an effect on wetting time and wickability. There were no significant differences between the levels of laundering conditions (except for detergent) on wetting time and wickability. Drying times with neutral and alkali were slower by repeated laundering; however, there was no obvious change in drying time. Hardness, water temperature and RPM had less of an impact on drying time.

Evaluation of the Bonding Behavior of the Rehabilitation Method Applying Carbon Fiber Subjected to the Variation of Environmental Condition (탄소섬유 접착 보강공법의 환경변화에 따른 부착특성 평가)

  • Han, Cheon Goo;Byun, Hang Yong;Park, Yong Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 2008
  • This paper provides the test results of bonding behavior of the interface between concrete substrate and carbon fiber in the rehabilitation method applying carbon fiber with epoxy based resin adhesive. The difference in each components was gradually increased subjected to the repetition of temperature variation, regardless of the strength of the substrate concrete, while the ultrasonic interface between each component occurred. An increase in difference of the temperature resulted in a decrease in bond strength of each component. Associated failure mode was shown to be interfacial failure and substrate concrete failure. No remarkable changes were found in the deformation and ultrasonic velocity of each component until the four cycles of the dry and moisture test. Hence, the moisture condition may not affect the bonding behavior of each component. After the repetition of dry and moisture test, corresponding bond strength was reduced to 40% of that before test. For the effect of freeze and thaw test, the cycle of freeze and thaw within 4 cycles resulted in debonding of each component.

A study on Genotoxicity Test of Hyeong-gae-yeon-gyo-tang extract (형개연교탕(荊芥連翹湯) 추출물의 유전독성(遺傳毒性) 평가)

  • Jee, Seon-Young;Hwang, Sun-Yi;Lee, Jong-Rok;Kim, Sang-Chan
    • The Korea Journal of Herbology
    • /
    • v.22 no.4
    • /
    • pp.287-300
    • /
    • 2007
  • Objectives : The genotoxicity of extract of "Hyeonggaeyeongyotang", a polyherbal formula has been used as a tonic agents in oriental medicine was tested. Methods : Extract of "Hyeonggaeyeongyotang" was tested by In Vitro Chromosome Aberration Test, Bacterial Reverse Mutation Assay and Micronucleus test according to OECD Guidelines and KFDA Guidelines [2005-60]. Results : The obtained results were as follows: 1. Chromosome Aberration Test: No significant changes in the number of aberrant metaphases having structural and number of aberrations were detected in all concentrations of "Hyeonggaeyeongyotang" extracts treated in this study. 2. Bacterial Reverse Mutation Assay: No significant increases in the number of revertant colonies compared to its negative control were detected in all concentrations of "Hyeonggaeyeongyotang" extracts treated in this study against all 5 strains except for $50{\mu}g/ml$ treated group where significantly decreases in colony numbers were detected agains all five strains used in this study as pharmacological effects not genotoxicity. 3. Micronucleus test: No significant changes in the number of micronucleated polychromatic erythrocytes among 2000 polychromatic erythrocytes compared to negative control were detected in all "Hyeonggaeyeongyotang" extracts-dosing groups tested. Conclusions : From above-mentioned results, it is concluded that "Hyeonggaeyeongyotang" extracts have not any genotoxicity against In Vitro Chromosome Aberration Test, Bacterial Reverse Mutation Assay and Micronucleus test.

  • PDF

Prediction of Lifetime according to AC Aging Phenomina in Epoxy Resin (에폭시 수지의 전기적 열화현상에 따른 수명 예측)

  • Lim, Jang-Seob;Mun, Su-Kyung;Min, Yong-Gee;Kim, Tae-Seoung
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.132-135
    • /
    • 1990
  • This paper presents prediction of insulation lifetime in stress. Essentially, Epoxy resin, when it was subjected to different types of aging condition, produced to varieties of electrical properties and lifetime using spectroscopy and breakdown test. The relationships between the structural and electrical changes of aged epoxy were Investigated.

  • PDF

Nondestructive Damage Detection in PSC Beams : Frequency-Based Method Versus Mode-Shape-Based Method (고유진동수 이용 손상추정법과 모드형상 이용 손상추정법에 의한 PSC 보의 비파괴 손상검색)

  • 김정태;류연선;조현만
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.43-58
    • /
    • 2002
  • A methodology to nondestructively locate and estimate size of damage in beam-type structures using a few natural frequencies or a few mode shapes is presented. A damage-localization algorithm to locate damage from changes in natural frequencies and a damage-sizing algorithm to estimate crack-size from natural frequency perturbation are outlined. A damage index algorithm to localize and estimate severity of damage from monitoring changes in mode shapes is outlined. The frequency-based method and the mode-shape-based method are evaluated for several damage scenarios by locating and sizing damage in PS concrete beams lot which a few natural frequencies and mode shapes are generated from finite element models. The result of the analyses indicates that the two methods correctly localize and closely estimate the size of the crack simulated in the test beam.

Identification of prestress-loss in PSC beams using modal information

  • Kim, Jeong-Tae;Yun, Chung-Bang;Ryu, Yeon-Sun;Cho, Hyun-Man
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.467-482
    • /
    • 2004
  • One of the uncertain damage parameters to jeopardize the safety of existing PSC bridges is the loss of the prestress force. A substantial prestress-loss can lead to severe problems in the serviceability and safety of the PSC bridges. In this paper, a nondestructive method to detect prestress-loss in beam-type PSC bridges using a few natural frequencies is presented. An analytical model is formulated to estimate changes in natural frequencies of the PSC bridges under various prestress forces. Also, an inverse-solution algorithm is proposed to detect the prestress-loss by measuring the changes in natural frequencies. The feasibility of the proposed approach is evaluated using PSC beams for which a few natural frequencies were experimentally measured for a set of prestress-loss cases. Numerical models of two-span continuous PSC beams are also examined to verify that the proposed algorithm works on more complicated cases.

A Study for Efficient Behavior of Beam-column Joint Structure Using Material Convergence Section Stage and a Temporary Boundary Condition by Strut (재료 융합 단계와 임시 스트럿의 경계조건을 이용한 기둥-보 강결 구조물의 효율적인 거동 연구)

  • Cho, Jae-Hyeung;Song, Jae-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.361-374
    • /
    • 2020
  • Recently, small and medium-sized rahmen-type bridges have been developed as a technology that ensures the stability of structural behavior and the safety of use at the same time by using efficient and economical materials that make up the convergence section of reinforced bar, structural steel and concrete. This study is about a rahmen-type structure applied with the installation and dismantling of the strut. It improves the serviceability of the structure by forming multi-points and efficiently applies the convergence section of structural steel and concrete materials to the structural system changes to induce the displacement improvement effect additionally. By constructing mock-up models for the beam-column joint, the displacement was calculated and compared, and this was compared and analyzed by numerical analysis. The final displacement showed an improvement effect of 13.46% to 36.28% based on the vertical displacement of the existing structure without struts through the experiment of the mock-up models. As a result of analysis by numerical analysis method, the displacement improvement effect of 42.89% could be derived.

Towards a digital twin realization of the blade system design study wind turbine blade

  • Baldassarre, Alessandro;Ceruti, Alessandro;Valyou, Daniel N.;Marzocca, Pier
    • Wind and Structures
    • /
    • v.28 no.5
    • /
    • pp.271-284
    • /
    • 2019
  • This paper describes the application of a novel virtual prototyping methodology to wind turbine blade design. Numeric modelling data and experimental data about turbine blade geometry and structural/dynamical behaviour are combined to obtain an affordable digital twin model useful in reducing the undesirable uncertainties during the entire turbine lifecycle. Moreover, this model can be used to track and predict blade structural changes, due for example to structural damage, and to assess its remaining life. A new interactive and recursive process is proposed. It includes CAD geometry generation and finite element analyses, combined with experimental data gathered from the structural testing of a new generation wind turbine blade. The goal of the research is to show how the unique features of a complex wind turbine blade are considered in the virtual model updating process, fully exploiting the computational capabilities available to the designer in modern engineering. A composite Sandia National Laboratories Blade System Design Study (BSDS) turbine blade is used to exemplify the proposed process. Static, modal and fatigue experimental testing are conducted at Clarkson University Blade Test Facility. A digital model was created and updated to conform to all the information available from experimental testing. When an updated virtual digital model is available the performance of the blade during operation can be assessed with higher confidence.