• 제목/요약/키워드: Structural Carbohydrate

검색결과 78건 처리시간 0.035초

Impact of wilting and additives on fermentation quality and carbohydrate composition of mulberry silage

  • Zhang, Ying Chao;Wang, Xue Kai;Li, Dong Xia;Lin, Yan Li;Yang, Fu Yu;Ni, Kui Kui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권2호
    • /
    • pp.254-263
    • /
    • 2020
  • Objective: The objective of this study was to investigate the effects of wilting and additives on the fermentation quality, structural and non-structural carbohydrate composition of mulberry silages. Methods: The selected lactic acid bacteria strains Lactobacillus plantarum 'LC279063' (L1), commercial inoculant Gaofuji (GF), and Trichoderma viride cellulase (CE) were used as additives for silage preparation. Silage treatments were designed as control (CK), L1, GF, or CE under three wilting rates, that is wilting for 0, 2, or 4 hours (h). After ensiling for 30 days, the silages were analyzed for the chemical and fermentation characteristics. Results: The results showed that wilting had superior effects on increasing the non-structural carbohydrate concentration and degrading the structural carbohydrate. After ensiling for 30 days, L1 generally had a higher fermentation quality than other treatments, indicated by the lower pH value, acetic acid, propionic acid and ammonia nitrogen (NH3-N) content, and the higher lactic acid, water soluble carbohydrate, glucose, galactose, sucrose, and cellobiose concentration (p<0.05) at any wilting rate. Wilting could increase the ratio of lactic acid/acetic acid and decrease the content of NH3-N. Conclusion: The results confirmed that wilting degraded the structural carbohydrate and increased the non-structural carbohydrate; and L1 exhibited better properties in improving fermentation quality and maintaining a high non-structural carbohydrates composition compared with the other treatments.

Connection of spectral pattern of carbohydrate molecular structure to alteration of nutritional properties of coffee by-products after fermentation

  • Samadi;Xin Feng;Luciana Prates;Siti Wajizah;Zulfahrizal;Agus Arip Munawar;Weixian Zhang;Peiqiang Yu
    • Animal Bioscience
    • /
    • 제37권8호
    • /
    • pp.1398-1407
    • /
    • 2024
  • Objective: The objective of this study was to determine internal structure spectral profile of by-products from coffee processing that were affected by added-microorganism fermentation duration in relation to truly absorbed feed nutrient supply in ruminant system. Methods: The by-products from coffee processing were fermented using commercial fermentation product, consisting of various microorganisms: for 0 (control), 7, 14, 21, and 28 days. In this study, carbohydrate-related spectral profiles of coffee by-products were correlated with their chemical and nutritional properties (chemical composition, total digestible nutrient, bioenergy values, carbohydrate sub-fractions and predicted degradation and digestion parameters as well as milk value of feed). The vibrational spectra of coffee by-products samples after fermentation for 0 (control), 7, 14, 21, and 28 days were determined using a JASCO FT/IR-4200 spectroscopy coupled with accessory of attenuated total reflectance (ATR). The molecular spectral analyses with univariate approach were conducted with the OMNIC 7.3 software. Results: Molecular spectral analysis parameters in fermented and non-fermented by-products from coffee processing included structural carbohydrate, cellulosic compounds, non-structural carbohydrates, lignin compound, CH-bending, structural carbohydrate peak1, structural carbohydrate peak2, structural carbohydrate peak3, hemicellulosic compound, non-structural carbohydrate peak1, non-structural carbohydrate peak2, non-structural carbohydrate peak3. The study results show that added-microorganism fermentation induced chemical and nutritional changes of coffee by-products including carbohydrate chemical composition profiles, bioenergy value, feed milk value, carbohydrate subfractions, estimated degradable and undegradable fractions in the rumen, and intestinal digested nutrient supply in ruminant system. Conclusion: In conclusion, carbohydrate nutrition value changes by added-microorganism fermentation duration were in an agreement with the change of their spectral profile in the coffee by-products. The studies show that the vibrational ATR-FT/IR spectroscopic technique could be applied as a rapid analytical tool to evaluate fermented by-products and connect with truly digestible carbohydrate supply in ruminant system.

쑥갓과 머위의 잎과 중기의 구조탄수화물의 변화 (The Changes in Structural Carbohydrate on Crown Daisy and Butterbur)

  • 김대진;윤수현;조영수;최미애
    • 생명과학회지
    • /
    • 제9권5호
    • /
    • pp.497-503
    • /
    • 1999
  • Change on the structural carbohydrate(several fiberous components) was determined by vegetables(crown daisy and butterbur)-cultivated in Ulsan, Kyungnam, Korea-as its stage of maturity developed. Samples were separated into leaf and stem, which were dried at 7$0^{\circ}C$ for 24hr, and ground to pass a 1mm screen. They were subjected to moisture, crude protein, crude fat and several dietary fiber-DF(dietary fiber, include unavaible components), NDF(neutral detergent fiber), ADF(acid detergent fiber), lignin, hemicellulose, cellulose and protein corrected NDF(c-NDF), IDF(indigestible fiber, include lignin, hemicellulose and cellulose). In general, structural carbohytrate(several dietary fiber) of vegetable was affected by the growth stage. In case of crown daisy and butterbur, dietary fiber in leaf was higher than DF in stem.

  • PDF

Carbohydrate and lipid spectroscopic molecular structures of different alfalfa hay and their relationship with nutrient availability in ruminants

  • Yari, Mojtaba;Valizadeh, Reza;Nnaserian, Abbas Ali;Jonker, Arjan;Yu, Peiqiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권11호
    • /
    • pp.1575-1589
    • /
    • 2017
  • Objective: This study was conducted to determine molecular structures related to carbohydrates and lipid in alfalfa hay cut at early bud, late bud and early flower and in the afternoon and next morning using Fourier transform infrared spectroscopy (FT/IR) and to determine their relationship with alfalfa hay nutrient profile and availability in ruminants. Methods: Chemical composition analysis, carbohydrate fractionation, in situ ruminal degradability, and DVE/OEB model were used to measure nutrient profile and availability of alfalfa hay. Univariate analysis, hierarchical cluster analysis (CLA) and principal components analysis (PCA) were conducted to identify FT/IR spectra differences. Results: The FT/IR non-structural carbohydrate (NSCHO) to total carbohydrates and NSCHO to structural carbohydrate ratios decreased (p<0.05), while lignin to NSCHO and lipid CH3 symmetric to CH2 symmetric ratios increased with advancing maturity (p<0.05). The FT/IR spectra related to structural carbohydrates, lignin and lipids were distinguished for alfalfa hay at three maturities by PCA and CLA, while FT/IR molecular structures related to carbohydrates and lipids were similar between alfalfa hay cut in the morning and afternoon when analyzed by PCA and CLA analysis. Positive correlations were found for FT/IR NSCHO to total carbohydrate and NSCHO to structural carbohydrate ratios with non-fiber carbohydrate (by wet chemistry), ruminal fast and intermediately degradable carbohydrate fractions and total ruminal degradability of carbohydrates and predicted intestinal nutrient availability in dairy cows ($r{\geq}0.60$; p<0.05) whereas FT/IR lignin to NSCHO and CH3 to CH2 symmetric stretching ratio had negative correlation with predicted ruminal and intestinal nutrient availability of alfalfa hay in dairy cows ($r{\geq}-0.60$; p<0.05). Conclusion: FT/IR carbohydrate and lipid molecular structures in alfalfa hay changed with advancing maturity from early bud to early flower, but not during the day, and these molecular structures correlated with predicted nutrient supply of alfalfa hay in ruminants.

Modification of Carbohydrate Metabolism in Transgenic Potato

  • Heyer, Arnd G.
    • Journal of Plant Biotechnology
    • /
    • 제2권1호
    • /
    • pp.13-19
    • /
    • 2000
  • Carbohydrates serve three different principal functions in the metabolism of plants. They are the primary products of energy fixation, they are important transport metabolites, and they are deposited as structural or storage compounds. Modification of carbohydrate metabolism therefore covers approaches to modify yield, to change sink/source relationships and thereby alter the ratio of harvestable material, and to improve the quality of crop plants. The scope of this article is to summarize research done at the Max-Planck-Institute related to the first two fields and to present in some detail what we learned, when we established a new carbohydrate storage form in potato.

  • PDF

Tryptophan 투여가 Reserpine과 식이 탄수화물 수준이 다른 저단백식이를 섭취한 흰쥐의 혈장 아미노산 농도, 간 Cytochrome P450 함량 및 간세표 미세구조에 미치는 영향 (The Effect of Tryptophan Administration on the Plasma Free Amino Acid Concentration, Liver Microsomal Cytochrome P450 Content and Cellular Structure of Rats Consumed Reserpine and Low Protein Diet with Different Carbohydrate Contents)

  • 신동순
    • Journal of Nutrition and Health
    • /
    • 제29권7호
    • /
    • pp.689-702
    • /
    • 1996
  • The purpose of this experiment was to compare the effects of tryptophan administration on nutritional status of female rats which consumed reserpine and 6% casein diet with different carbohydrate contents(87%, 65%, 44% respective). Final body weight, body weight gain, FER, plasma amino acid concentration and microsomal cytochrome P 450 content in liver were measured and microscopic structure of hepatocytes was observed. In low-protein diet, the higher the carbohydrate content of diet was, the lower the damage was in the rat's liver. Tryptophan administration after dose of reserpine induced more effective recovery from liver damage of rats in high carbohydrate diet group than that in low carbohydrate diet group. In conclusion, the general nutritional assessments such as final body weight and body weight gain provided better estimate of the degree of structural changes in hepatocytes than functional assessment such as plasma amino acid concentration or liver microsomal cytochrome P450.

  • PDF

Ozone Impacts on Soluble Carbohydrates, Antioxidant Activity and Macro-element Concentrations in Rice Seedling

  • Sung Jwa-Kyung;Park So-Hyeon;Lee Su-Yeon;Lee Ju-Young;Jang Byoung-Choon;Hwang Seon-Woong;Kim Tae-Wan;Song Beom-Heon
    • 한국작물학회지
    • /
    • 제51권2호
    • /
    • pp.142-147
    • /
    • 2006
  • The present study describes carbohydrate metabolism, macro-element utilization and antioxidant defenses in response to an ozone dose (100 ppb, 8d) in two rice varieties. Tolerant (cv. Jinpumbyeo) and sensitive (cv. Chucheongbyeo) varieties of rice were grown in growth chamber for 30 days after sowing. Concentrations of chloroplast pigments and non-structural carbohydrates as well as activity of antioxidant enzymes were determined to evaluate the resistance against ozone stress. Ozone caused the decrease in chlorophyll a and carotenoid contents, and also resulted in faster decomposition of non-structural carbohydrate in leaf blade and leaf sheath. The contents of nitrogen and potassium in leaves were visibly decreased in cv. Chucheongbyeo with an increase in ozone exposure, but not in cv. Jinpumbyeo. Enzymatic antioxidants against ROS in both varieties responded in the order of POD, SOD and CAT, and their capacity was stronger in cv. Jinpumbyeo.

Metabolic Engineering of Saccharomyces cerevisiae to Improve Glucan Biosynthesis

  • Zhou, Xing;He, Jing;Wang, Lingling;Wang, Yang;Du, Guocheng;Kang, Zhen
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권5호
    • /
    • pp.758-764
    • /
    • 2019
  • ${\beta}$-Glucan is a chief structural polymer in the cell wall of yeast. ${\beta}$-Glucan has attracted intensive attention because of its wide applications in health protection and cosmetic areas. In the present study, the ${\beta}$-glucan biosynthesis pathway in S. Cerevisiae was engineered to enhance ${\beta}$-glucan accumulation. A newly identified bacterial ${\beta}-1$, 6-glucan synthase GsmA from Mycoplasma agalactiae was expressed, and increased ${\beta}$-glucan content by 43%. In addition, other pathway enzymes were investigated to direct more metabolic flux towards the building of ${\beta}$-glucan chains. We found that overexpression of Pgm2 (phosphoglucomutase) and Rho1 (a GTPase for activating glucan synthesis) significantly increased ${\beta}$-glucan accumulation. After further optimization of culture conditions, the ${\beta}$-glucan content was increased by 53.1%. This study provides a new approach to enhance ${\beta}$-glucan biosynthesis in Saccharomyces cerevisiae.

A Review on Use of Carbohydrate-based Fillers and Pigments in Packaging Paper

  • Bumbudsanpharoke, Nattinee;Ko, Seonghyuk
    • 한국포장학회지
    • /
    • 제22권3호
    • /
    • pp.155-161
    • /
    • 2016
  • As one of traditional packaging materials, paper and paperboard are being more popular and beneficial thanks to their environmental sustainability and have been widely used in packaging applications, from light weight infusible tissue for tea/coffee bags to heavy duty boards for the distribution. Papermakers have to design the products having a desired customized function with their paper machine. Globally, the use of filler and pigment in papermaking is now a very common practice to meet the needs of customers. Many benefits can be achieved as a result of filler addition, which mainly includes cost and energy savings. The replacement of traditional mineral fillers and pigments with biodegradable and renewable carbohydrate polymers is a very interesting and promising research topic due to the concern of environmental impact. In this review paper, the use of traditional and novel carbohydrate fillers and pigments in cellulosic paper is highlighted. It is noteworthy that there are still some challenges and technical barriers associated with the use of these organic materials in point of structural stabilities and manufacturing costs, although most of them are available in market as the commercialized products. With the emerging nanotechnologies, it is believed that the use of carbohydrate-based filler and pigment for papermaking will increase and bring technical advantages to industry.