Browse > Article
http://dx.doi.org/10.20909/kopast.2016.22.3.155

A Review on Use of Carbohydrate-based Fillers and Pigments in Packaging Paper  

Bumbudsanpharoke, Nattinee (Department of Packaging, Yonsei University)
Ko, Seonghyuk (Department of Packaging, Yonsei University)
Publication Information
KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY / v.22, no.3, 2016 , pp. 155-161 More about this Journal
Abstract
As one of traditional packaging materials, paper and paperboard are being more popular and beneficial thanks to their environmental sustainability and have been widely used in packaging applications, from light weight infusible tissue for tea/coffee bags to heavy duty boards for the distribution. Papermakers have to design the products having a desired customized function with their paper machine. Globally, the use of filler and pigment in papermaking is now a very common practice to meet the needs of customers. Many benefits can be achieved as a result of filler addition, which mainly includes cost and energy savings. The replacement of traditional mineral fillers and pigments with biodegradable and renewable carbohydrate polymers is a very interesting and promising research topic due to the concern of environmental impact. In this review paper, the use of traditional and novel carbohydrate fillers and pigments in cellulosic paper is highlighted. It is noteworthy that there are still some challenges and technical barriers associated with the use of these organic materials in point of structural stabilities and manufacturing costs, although most of them are available in market as the commercialized products. With the emerging nanotechnologies, it is believed that the use of carbohydrate-based filler and pigment for papermaking will increase and bring technical advantages to industry.
Keywords
Packaging paper; Carbohydrate; Filler; Pigment; Papermaking;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Morsy, F. A., El-Sherbiny, S., Samir, M., and Fouad, O. A. 2016. Application of nanostructured titanium dioxide pigments in paper coating: a comparison between prepared and commercially available ones. J. Coating. Tech. Res. 13: 307-316.   DOI
2 Hamilton, R. 2014. Using renewable nanotechnology (and other novel approaches) to improve base paper performance http://www.cerealus.com/wp-content/uploads/2014/05/2014-AWA-Silicone-Seminar-CNF-Presentation1.pdf
3 Fernandes, S. C. M., Freire, C. S. R., Silvestre, A. J. D., Neto, C. P., and Gandini, A. 2011. Novel materials based on chitosan and cellulose. Polym. Int. 60: 875-882.   DOI
4 Stepien, M., Chinga-Carrasco, G., Saarinen, J. J., Teisala, H., Tuominen, M., Aromaa, M., Haapanen, J., Kuusipalo, J., Makela, J. M., and Toivakka, M. 2013. Wear resistance of nanoparticle coatings on paperboard. Wear 307: 112-118.   DOI
5 Xiao, N. and Pu, J. W. 2013. Paper and board pigment coating raw materials-A review of some recent innovative novelties. Adv. Mat. Res. 602: 1617-1623.
6 Yang, S. J., Tang, Y. J., Wang, J. M., Kong, F. G., and Zhang, J. H. 2014. Surface treatment of cellulosic paper with starchbased composites reinforced with nanocrystalline cellulose. Ind. Eng. Chem. Res. 53: 13980-13988.   DOI
7 Laine, C. 2005. Structures of hemicelluloses and pectins in wood and pulp. Helsinki University of Technology, Espoo, Finland, pp. 65.
8 Fernandes, S. C. M., Freire, C. S. R., Silvestre, A. J. D., Desbrieres, J., Gandini, A., and Neto, C. P. 2010. Production of coated papers with improved properties by using a water-soluble chitosan derivative. Ind. Eng. Chem. Res. 49: 6432-6438.   DOI
9 Bajpai, P. 2013. Biorefinery in the pulp and paper industry. Academic Press, pp. 1-102.
10 Kataja-aho, J., Haavisto, S., Asikainen, J., Hyvarinen, S., and Vuoti, S. 2012. The influence of cationized birch xylan on wet and dry strength of fine paper. BioRes. 7: 1713-1728.
11 Shen, J., Song, Z. Q., Qian, X. R., and Ni, Y. H. 2011. Carbohydrate- based fillers and pigments for papermaking: A review. Carbohydr. Polym. 85: 17-22.   DOI
12 Swoboda, D. P. and Wendt, G. A. 2009. Disposable pressware prepared from paperboard sized with nano starch. U.S. Patent 20090173775A1
13 Magaton, A. S., Colodette, J. L., Pilo-Veloso, D., and Gomide, J. L. 2011. Behavior of eucalyptus wood xylans across kraft cooking. J. Wood Chem. Technol. 31: 58-72.   DOI
14 Rutledge, A. R., Venditti, R. A., Pawlak, J. J., Patel, S., and Cibils, J. L. 2008. Carbonized starch microcellular foam-cellulose fiber composite structures. BioRes. 3: 1063-1080.
15 Laine, C., Harlin, A., Hartman, J., Hyvärinen, S., Kammiovirta, K., Krogerus, B., Pajari, H., Rautkoski, H., Setala, H., and Sievänen, J. 2013. Hydroxyalkylated xylans - Their synthesis and application in coatings for packaging and paper. Ind. Crops Prod. 44: 692-704.   DOI
16 Xylophane. Application of Skalax. http://www.xylophane.com/application
17 Song, D. L., Thio, Y. S., and Deng, Y. L. 2011. Starch nanoparticle formation via reactive extrusion and related mechanism study. Carbohydr. Polym. 85: 208-214.   DOI
18 Sun, Q. J., Li, G. H., Dai, L., Ji, N., and Xiong, L. 2014. Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation. Food Chem. 162: 223-228.   DOI
19 Kirwan, M. J. 2003. Paper and paperboard packaging. In: Food packaging technology. Coles, R. McDowell, D. Kirwan, M. J. (eds.), CRC Press, London, United Kinddom, pp. 174-240.
20 LeCorre, D., Dufresne, A., Rueff, M., Khelifi, B., and Bras, J. 2014. All starch nanocomposite coating for barrier material. J. Appl. Polym. Sci. 131: 398261-398267.
21 Shen, J., Fatehi, P., and Ni, Y. H. 2014. Biopolymers for surface engineering of paper-based products. Cellulose 21: 3145- 3160.   DOI
22 Kumar, P., Negi, Y. S., and Singh, S. P. 2011. Filler loading in the lumen or/and cell wall of fibers - A literature review. BioRes. 6: 3526-3546.
23 Lavoine, N., Desloges, I., Khelifi, B., and Bras, J. 2014. Impact of different coating processes of microfibrillated cellulose on the mechanical and barrier properties of paper. J. Mater. Sci. 49: 2879-2893.   DOI
24 Aulin, C., Gallstedt, M., and Lindstrom, T. 2010. Oxygen and oil barrier properties of microfibrillated cellulose films and co atings. Cellulose 17: 559-574.   DOI
25 Ankerfors, M. 2015. Microfibrillated cellulose: Energy-efficient preparation techniques and key properties. Ph.D. Dissertation, KTH Royal Institute of Technology, Stockholm, Sweden.
26 Eriksen, O., Syverud, K., and Gregersen, O. 2008. The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord. Pulp Pap. Res. J. 23: 299-304.   DOI
27 Marques, S., Gírio, F., Santos, J., and Roseiro, J. 2016. Pulsed fed-batch strategy towards intensified process for lactic acid production using recycled paper sludge. Biomass Conv. Bioref. 1: 1-11.
28 Piergiovanni, L. and Limbo, S. 2016. Cellulosic packaging materials. In: Food packaging materials. Piergiovanni, L. Limbo, S. (eds.), Springer International Publishing, Switzerland, pp. 23-31.
29 Shen, J., Song, Z. Q., Qian, X. R., and Yang, F. 2010. Carboxymethyl cellulose/alum modified precipitated calcium carbonate fillers: Preparation and their use in papermaking. Carbohydr. Polym. 81: 545-553.   DOI
30 Lee, H. L., Shin, J. Y., Koh, C. H., Ryu, H., Lee, D. J., and Sohn, C. 2002. Surface sizing with cationic starch: Its effect on paper quality and papermaking process. Tappi J. 1: 34-40.
31 Bolivar, A. I., Venditti, R. A., Pawlak, J. J., and El-Tahlawy, K. 2007. Development and characterization of novel starch and alkyl ketene dimer microcellular foam particles. Carbohydr. Polym. 69: 262-271.   DOI
32 Koshikawa, M. and Isogai, A. 2004. Analyses of incinerated ash of paper sludge: comparison with incinerated ash of municipal solid waste. J. Mater. Cycles Waste Manage. 6: 64-72.   DOI
33 Fowle, J. and Kirwan, M. J. 2012. Paper-based flexible packaging. In: Handbook of paper and paperboard packaging technology. Kirwan, M. J. (ed.), John Wiley & Sons, West Sussex, United Kingdom, pp. 84.
34 Jovanovic, S., Krgovic, M., and Osap, D. 2007. Application of natural and synthetic polymers in a production of paper. Hemijska Industrija 61: 171-185.   DOI
35 Jobling, S. 2004. Improving starch for food and industrial applications. Curr. Opin. Plant Biol. 7: 210-218.   DOI
36 Nachtergaele, W. 1989. The Benefits of Cationic Starches for the Paper-Industry. Starch-Starke 41: 27-31.   DOI
37 Lindqvist, H., Holmback, J., Rosling, A., Salminen, K., Holmbom, B., Auer, M., and Sundberg, A. 2013. Galactoglucomannan Derivatives and Their Application in Papermaking. BioRes. 8: 994-1010.
38 Samanta, K. K., Basak, S., and Chattopadhyay, S. K. 2016. Potentials of fibrous and nonfibrous materials in biodegradable packaging. In: Environmental Footprints of Packaging. Muthu, S. S. (ed.), Springer, Singapore, pp. 75-113.
39 Hubbe, M. A., Pawlak, J. J., and Koukoulas, A. A. 2008. Paper's appearance: A review. BioRes. 3: 627-665.
40 Maurer, H. W. 2009. Starch in the paper industry. In: Starch: chemistry and technology. BeMiller, J. N. Whistler, R. L. (eds.), Academic Press, New York, pp. 657-698.
41 Gallstedt, M. and Hedenqvist, M. S. 2006. Packaging-related mechanical and barrier properties of pulp-fiber-chitosan sheets. Carbohydr. Polym. 63: 46-53.   DOI
42 Lindqvist, H. 2013. Improvement of wet and dry web properties in papermaking by controlling water and fiber quality. Abo Akademi University, Finland, pp. 1-62.
43 Myllymaki, V., Aksela, R., Kangaslahti, H. M., and Silenius, P. 2006. Paper pigment, process for producing a paper product and paper product. Patent WO2006134211 A1.
44 Shen, J., Song, Z. Q., Qian, X. R., and Liu, W. X. 2009. Modification of papermaking grade fillers: A brief review. BioRes. 4: 1190-1209.
45 Jin, L. Q. and Xu, Q. H. 2013. Preparation of hollow microsphere and its application in paper coating. Adv. Mat. Res. 652: 740-744.
46 Kajanto, I. and Kosonen, M. 2012. The potential use of micro- and nanofibrillated cellulose as a reinforcing element in paper. J. Sci. Tech. For. Prod. and Proc. 2: 42-48.
47 Lavoine, N., Desloges, I., Dufresne, A., and Bras, J. 2012. Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: A review. Carbohydr. Polym. 90: 735-764.   DOI
48 Hosokawa, J., Nishiyama, M., Yoshihara, K., Kubo, T., and Terabe, A. 1991. Reaction between chitosan and cellulose on biodegradable composite film formation. Ind. Eng. Chem. Res. 30: 788-792.   DOI