• Title/Summary/Keyword: Structural Adhesive

Search Result 314, Processing Time 0.02 seconds

A Study on the Shear Impact Characteristics of Adhesively Bonded Tubular Joints (접착 조인트의 전단 충격특성에 관한 연구)

  • Kim, Yong-Ha;Park, Sang-Kun;Kim, Dong-Ok;Ryu, Yong-Moon;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.25 no.1
    • /
    • pp.14-18
    • /
    • 2012
  • The structural adhesives have the advantage of improving automobile performances and are being applied to joining light weight materials like aluminium and composite. In order to characterize the impact behavior of structural adhesive, instrumented impact tests were performed with respect to pin-ring adhesively bonded joint specimens. Also dynamic FE analysis was carried out using LS-DYNA to compare the results with experiments.

Humidity Aging Effect on Adhesive Strength of Composite Single-lap Joint

  • Kim, Myungjun;Kim, Yongha;Kim, Pyunghwa;Roh, Jin-Ho;Park, Jungsun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.56-62
    • /
    • 2017
  • Because adhesively bonded joints are used in many structural systems, it is important to predict accurate adhesive strengths. Composite aircraft with many joints are easily exposed to low temperatures and high relative humidity. This paper presents a humidity aging effect on the adhesive strength of a composite single-lap joint (SLJ). The adhesive strength of the SLJ is predicted using a finite element analysis with a cohesive zone model (CZM) technique. The humidity aging effect is evaluated based on the adhesive strength and CZM parameters. A lap joint test is carried out on the composite SLJ specimens, which are exposed for four months of 100% R.H. at $25^{\circ}C$. The predicted strengths are in good agreement with experimental data, and the actual crack propagation is satisfactorily simulated using the local CZM technique.

Failure Load Prediction of the Composite Adhesive Joint Using the Damage Zone Ratio (파손영역비를 이용한 복합재 접착 체결부의 파손강도 예측)

  • Lee, Young-Hwan;Ban, Chang-Su;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.21 no.4
    • /
    • pp.22-28
    • /
    • 2008
  • The composite joint has become an important research area because the structural efficiency of a structure with a joint is determined by its joints rather than by its basic structure since the joints are often the weakest areas in composite structures. In this paper, the strengths of adhesive joints consisting of metal and composites were predicted and tested by the maximum strain theory and damage zone theory. Nonlinear finite element analyses of adhesive Joints considering the material nonlinearity of the adhesive layer were performed. From the tests and analyses, the strengths of the adhesive joints could be predicted to within 22.2% using the damage zone ratio.

Experimental examination for effect of voids on bonding performance in cryogenic temperature condition (내부 기공이 극저온에서 접착강도에 미치는 영향에 대한 실험적 고찰)

  • Shon, Min-Young;Kim, Jong-Ho;Kim, Jong-Hak
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.14-17
    • /
    • 2009
  • Adhesive joints are widely used for structural joining applications in various fields and environmental conditions. Polyurethane adhesive is using for LNG carrier with cryogenic temperature condition. In industrial application of polyurethane adhesive, void of adhesive layer is often discussed regarding its effects on bonding properties. In present study, artificial void were prepared on Polyurethane adhesive layer with various size and location. The single lap shear test was carried out by using prepared specimens under $-170^{\circ}C$. As a result, it was confirm that the void of adhesive layer didn't affect the adhesion properties independent of their size and location.

Pot Life of Structural Adhesives for FRP Composite Used in Strengthening RC Members (구조보강용 FRP 함침·접착수지의 사용가능시간 분석)

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.191-198
    • /
    • 2008
  • Pot life of two-component adhesives such as epoxy resin used in saturating FRP composite is defined as a certain time periods which can guarantee the bond performance and workability of epoxy resin. Therefore, adhesion procedure in strengthening RC members should be completed before chemical hardening is going on at job site. It has been known that there are two types of test method to evaluate the pot life of structural adhesive based on apparent viscosity or temperature change. This study is to verify the test methods how to assess pot life of structural adhesive for FRP composites by means of changing in apparent viscosity and means of exothermic reaction temperature proposed in existing test standards. Results of each test method were compared and analyzed, and reasonable test and evaluation method were suggested.

Influence of the presence of defects on the stresses shear distribution in the adhesive layer for the single-lap bonded joint

  • Benchiha, Aicha;Madani, Kouider
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.1017-1030
    • /
    • 2015
  • In this study, the finite element method was used to analyze the distribution of the adhesive shear stresses in the single-lap bonded joint of two plates 2024-T3 aluminum with and without defects. The effects of the adhesive properties (shear modulus, the thickness and the length of the adhesive were highlighted. The results prove that the shear stresses are located on the free edges of the adhesively bonding region, and reach maximum values near the defect, because the concentration of high stress occurs near this area.

Isogeometric Analysis of Electrostatic Adhesive Forces in Two-Dimensional Curved Electrodes (2차원 곡면형 전극에서 정전기 흡착력의 아이소-지오메트릭 해석)

  • Oh, Myung-Hoon;Kim, Jae-Hyun;Kim, Hyun-Seok;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.199-204
    • /
    • 2021
  • In this study, an isogoemetric analysis (IGA) method that uses NURBS (Non-Uniform Rational B-Spline) basis functions in computer-aided design (CAD) systems is employed to account for the geometric exactness of curved electrodes constituting an electro-adhesive pad in electrostatic problems. The IGA is advantageous for obtaining precise normal vectors when computing the electro-adhesive forces on curved surfaces. By performing parametric studies using numerical examples, we demonstrate the superior performance of the curved electrodes, which is attributed to the increase in the normal component of the electro-adhesive forces. In addition, concave curved electrodes exhibit better performance than their convex counterparts.

Adhesive Area Detection System of Single-Lap Joint Using Vibration-Response-Based Nonlinear Transformation Approach for Deep Learning (딥러닝을 이용하여 진동 응답 기반 비선형 변환 접근법을 적용한 단일 랩 조인트의 접착 면적 탐지 시스템)

  • Min-Je Kim;Dong-Yoon Kim;Gil Ho Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.57-65
    • /
    • 2023
  • A vibration response-based detection system was used to investigate the adhesive areas of single-lap joints using a nonlinear transformation approach for deep learning. In industry or engineering fields, it is difficult to know the condition of an invisible part within a structure that cannot easily be disassembled and the conditions of adhesive areas of adhesively bonded structures. To address these issues, a detection method was devised that uses nonlinear transformation to determine the adhesive areas of various single-lap-jointed specimens from the vibration response of the reference specimen. In this study, a frequency response function with nonlinear transformation was employed to identify the vibration characteristics, and a virtual spectrogram was used for classification in convolutional neural network based deep learning. Moreover, a vibration experiment, an analytical solution, and a finite-element analysis were performed to verify the developed method with aluminum, carbon fiber composite, and ultra-high-molecular-weight polyethylene specimens.

Study on Adhesive Strength of Polymer Modified Cement Mortar for Maintenance in Concrete Structure (콘크리트 구조물 보수용 폴리머시멘트 모르타르의 부착강도 특성에 관한 연구)

  • Park, Sang-Soon;Kim, Jung-Heum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.128-135
    • /
    • 2010
  • Polymer-modified cement mortar(PCM) has been widely used for strengthening of the concrete structures due to its excellent physical properties such as high strength and durability. Adhesive strength or behavior, on the other hands, between PCM and concrete is very important in strengthening the concrete member using PCM. Therefore the adhesive failure mechanism between PCM and concrete should be fully verified and understood. This study was performed to evaluate adhesive strength of PCM to the concrete by the direct pull-out test. In the direct pull-out tests, the adhesive strength under the various pre-treatment conditions such as immersion, thunder shower, freezing and thawing are evaluated. Also, the field direct pull-out test are performed to investigate the adhesive strength of mock-up test specimens. In the results of the test, the adhesive strength value by field test are lower than those of the standard curing condition. From these comparison and investigation, field test result was similar with the thunder shower test result. The results of the test was used to evaluate the korean industrial standard of polymer modified cement mortars for maintenance in concrete.

Engineering Properties of Sewage Polymer Concrete Culvert (폴리머 콘크리트를 적용한 하수암거의 공학적 특성)

  • Kwon, Seung Jun;Min, Byung Yoon;Park, Sang Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.9-17
    • /
    • 2012
  • Concrete sewage culvert shows degradation with time since it is always exposed to various harmful ions, and deterioration of concrete culvert propagates to structural safety problems. After reclamation, maintenance for concrete sewage culvert is very difficult so that high durable and structural performance are essential for the sewage concrete culvert. Recently polymer concrete has been used to improve mechanical properties and durability performance. In this paper, engineering properties are evaluated for sewage culvert made with polymer concrete, and leakage and adhesive strength between joints are evaluated with small-scale models. The polymer sewage culvert shows high compressive strength over 100MPa with low water permeability and chloride penetration. Furthermore, high resistances to chemical and biological attack are evaluated. Through tests for leakage and adhesive, unification of joints is verified with evaluation of no leakage and high adhesive strength. Precast polymer sewage culvert in this paper can be actively used for severe conditions like sewage lines.