• Title/Summary/Keyword: Strongly EP element

Search Result 3, Processing Time 0.053 seconds

Generalized Inverses and Solutions to Equations in Rings with Involution

  • Yue Sui;Junchao Wei
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.1
    • /
    • pp.15-30
    • /
    • 2024
  • In this paper, we focus on partial isometry elements and strongly EP elements on a ring. We construct characterizing equations such that an element which is both group invertible and MP-invertible, is a partial isometry element, or is strongly EP, exactly when these equations have a solution in a given set. In particular, an element a ∈ R# ∩ R is a partial isometry element if and only if the equation x = x(a)*a has at least one solution in {a, a#, a, a*, (a#)*, (a)*}. An element a ∈ R#∩R is a strongly EP element if and only if the equation (a)*xa = xaa has at least one solution in {a, a#, a, a*, (a#)*, (a)*}. These characterizations extend many well-known results.

STRONG P-CLEANNESS OF TRIVIAL MORITA CONTEXTS

  • Calci, Mete B.;Halicioglu, Sait;Harmanci, Abdullah
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1069-1078
    • /
    • 2019
  • Let R be a ring with identity and P(R) denote the prime radical of R. An element r of a ring R is called strongly P-clean, if there exists an idempotent e such that $r-e=p{\in}P$(R) with ep = pe. In this paper, we determine necessary and sufficient conditions for an element of a trivial Morita context to be strongly P-clean.

Approximate evaluations and simplified analyses of shear- mode piezoelectric modal effective electromechanical coupling

  • Benjeddou, Ayech
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.275-302
    • /
    • 2015
  • Theoretical and numerical assessments of approximate evaluations and simplified analyses of piezoelectric structures transverse shear modal effective electromechanical coupling coefficient (EMCC) are presented. Therefore, the latter is first introduced theoretically and its approximate evaluations are reviewed; then, three-dimensional (3D) and simplified two-dimensional (2D) plane-strain (PStrain) and plane-stress (PStress) piezoelectric constitutive behaviors of electroded shear piezoceramic patches are derived and corresponding expected short-circuit (SC) and open-circuit (OC) frequencies and resulting EMCC are discussed; next, using a piezoceramic shear sandwich beam cantilever typical benchmark, a 3D finite element (FE) assessment of different evaluation techniques of the shear modal effective EMCC is conducted, including the equipotential (EP) constraints effect; finally, 2D PStrain and PStress FE modal analyses under SC and OC electric conditions, are conducted and corresponding results (SC/OC frequencies and resulting effective EMCC) are compared to 3D ones. It is found that: (i) physical EP constraints reduce drastically the shear modal effective EMCC; (ii) PStress and PStrain results depend strongly on the filling foam stiffness, rendering inadequate the use of popular equivalent single layer models for the transverse shear-mode sandwich configuration; (iii) in contrary to results of piezoelectric shunted damping and energy harvesting popular single-degree-of-freedom-based models, transverse shear modal effective EMCC values are very small in particular for the first mode which is the common target of these applications.