• Title/Summary/Keyword: Strong magnetic field

Search Result 254, Processing Time 0.028 seconds

Observation of the Domain Structures in Soft Magnetic (Fe97A13)85N15/Al2O3 Multilayers

  • Stobiecki, T.;Zoladz, M.
    • Journal of Magnetics
    • /
    • 제8권1호
    • /
    • pp.13-17
    • /
    • 2003
  • The longitudinal magnetooptical Kerr effect was used to analyse magnetic domains in soft magnetic ${(Fe_{97}A1_3)}_{85}N_{15}$/$Al_{2}O_{3}$ multilayers in order to get microscopic understanding of interlayer exchange coupling. The measuring system consists of a Kerr microscope, a CCIR camera (with an 8-bit framegrabber), 16 bit digital camera and computer system for real-time image processing and to control external magnetic field and cameras. The strength of ferromagnetic (EM) coupling as a function of the spacer thickness of $Al_2O_3$ was investigated. It was found that strong FM-coupling, strong uniaxial anisotropy and coherent rotation of the magnetization have been observed for the spacer thickness in the range of 0.2 nm $\leq$ t $\leq$ 1 m, however, weak FM-coupling, patch domains and $360^{\circ}$-walls occur for the spacer thickness of t = 2.5 nm. At a spacer thickness of t $\geq$ 5 nm transition takes place from weak FM-coupling to the decoupled state where complex interlayer interactions and different types of the domain walls were observed.

영구자석 Halbach 배열을 이용한 초고속 모터용 계자시스템의 구성과 특성 해석 (Construction and Characteristics Analysis on the Field System of the High Speed Motor by using Permanent Magnet Halbach Array)

  • 장석명;서진호;정상섭;최상규
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권4호
    • /
    • pp.152-160
    • /
    • 1999
  • A high speed motor has been generating a lot of attention due to its performance-more light, thin, short, compact than ordinary motors. But they have low efficiency with high frequency power source because of the iron losses which may produce too much heat as well as the copper losses occurred in the rotor windings. The Halbach array can generate the strong magnetic field systems without additional magnetic materials, therefore the iron losses can be removed. In this paper, the Halbach array is applied to the field system for the high speed motor, and three dimensional FEM is used to analyze the field of the Halbach array considering with the leakage flux. The measured values of flux density are also compared with the FEM analysis. And the magnetic characteristics of the Halbach array field system are compared with those of the conventional field systems such as slot-iron type, PM-iron type. Consequently, it is confirmed that the Halbach array field system is more suitable to the high speed motor because it has high flux density, sinusoidal flux distribution than others.

  • PDF

초전도 자기분리에 의한 원재료에서의 철산화물 제거 (The removal of iron oxides from raw materials by superconducting magnetic separator)

  • 권준모;하동우;김태형
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.193-193
    • /
    • 2010
  • Magnetic separation is expected to be applied for material refinement as an important supporting technology. In the superconducting magnetic separation, the cohesive force between particles is strong compared with that in the other magnetic separation. The use of high magnetic field by the superconducting magnet enhances the magnetic substance capture ability of the magnetic separation. Industrial raw materials was used for the superconducting magnetic separation. Cry-cooled, NB-Ti superconducting magnet with. 100 mm room temperature bore and 600 mm of height was used for magnetic separator.

  • PDF

The Effect of Transverse Magnetic field on Macrosegregation in vertical Bridgman Crystal Growth of Te doped InSb

  • Lee, Geun-Hee;Lee, Zin-Hyoung
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 The 9th KACG Technical Annual Meeting and the 3rd Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.522-522
    • /
    • 1996
  • An investigation of the effects of transverse magnetic field and Peltier effect on melt convection and macrosegregation in vertical Bridgman crystal grosth of Te doped InSb was been carried out by means of microstructure observation, Hall measurement, electrical resistivity measurement and X-ray analysis. Before the experiments, Interface stability, convective instability and suppression of convection by magnetic field were calculated theoretically. After doping 1018, 1019 cm-3 Te in InSb, the temperature of Bridgman furnace was set up at $650^{\circ}C$. The samples were grown in I.D. 11mm, 100mm high quartz tube. The velocity of growth was about 2${\mu}{\textrm}{m}$/sec. In order to obtain the suppression of convection by magnetic field in the middle of growth, 2-4KG magnetic field was set on the melt. For searching of the shape of solid-liquid interface and the actual velocity of crystal growth, let 2A current flow from solid to liquid for 1second every 50seconds repeatedly (Peltier effect). The grown InSb was polycrystal, and each grain was very sharp. There was no much difference between the sample with and without magnetic field at a point of view of microstructure. For the sample with Peltier effect, the Peltier marks(striation) were observed regularly as expected. Through these marks, it was found that the solid-liquid interface was flat and the actual growth velocity was about 1-2${\mu}{\textrm}{m}$/sec. On the ground of theoretical calculation, there is thermosolutal convection in the Te doped InSb melt without magnetic field in this growth condition. and if there is more than 1KG magnetic field, the convection is suppressed. Through this experiments, the effective distribution coefficients, koff, were 0.35 in the case of no magnetic field, and 0.45 when the magnetic field is 2KG, 0.7 at 4KG. It was found that the more magnetic field was applied, the more convection was suppressed. But there was some difference between the theoretical calculation and the experiment, the cause of the difference was thought due to the use of some approximated values in theoretical calculation. In addition to these results, the sample with Peltier effect showed unexpected result about the Te distribution in InSb. It looked like no convection and no macrosegregation. It was thought that the unexpected behavior was due to Peltier mark. that is, when the strong current flew the growing sample, the mark was formed by catching Te. As a result of the phenomena, the more Te containing thin layer was made. The layer ruled the Hall measurement. The values of resistivity and mobility of these samples were just a little than those of other reference. It was thought that the reason of this result was that these samples were due to polycrystal, that is, grain boundaries had an influence on this result.

  • PDF

Computer Simulation of Switching Characteristics and Magnetization Flop in Magnetic Tunnel Junctions Exchange Biased by Synthetic Antiferromagnets

  • Lim, S.H.;Uhm, Y.R.
    • Journal of Magnetics
    • /
    • 제6권4호
    • /
    • pp.132-141
    • /
    • 2001
  • The switching characteristics and the magnetization-flop behavior in magnetic tunnel junctions exchange biased by synthetic antiferromagnets (SyAFs) are investigated by using a computer simulations based on a single-domain multilayer model. The bias field acting on the free layer is found to be sensitive to the thickness of neighboring layers, and the thickness dependence of the bias field is greater at smaller cell dimensions due to larger magnetostatic interactions. The resistance to magnetization flop increases with decreasing cell size due to increased shape anisotropy. When the cell dimensions are small and the synthetic antiferromagnet is weakly, or not pinned, the magnetization directions of the two layers sandwiching the insulating layer are aligned antiparallel due to a strong magnetostatic interaction, resulting in an abnormal magneto resistance (MR) change from the high-MR state to zero, irrespective of the direction of the free-layer switching. The threshold field for magnetization-flop is found to increase linearly with increasing antiferromagnetic exchange coupling in the synthetic antiferromagnet. Irrespective of the magnetic parameters and cell sizes, magnetization flop does not exist near zero applied field, indicating that magnetization flop is driven by the Zeeman energy.

  • PDF

A Study on Magnetic Cure System Depending on Dominant Direction of Meridian using Heating Diagnosis Method

  • Kim, Byoung-Hwa;Lee, Hie-Soung;Lee, Woo-Cheol;Han, Gueon-Sang;Won, You-Seub;Sagong, Seok-Jin;Ahn, Hyun-Sik;Kim, Do-Hyun
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.1776-1779
    • /
    • 2002
  • In this paper, we measured the heating time on the key measuring point of the meridian of the human body's left and right by using heating machine. Then, based on the fuzzy theory, this study diagnosed the each meridian's strength and weakness, After that, both the strengthening and weakening stimulus of magnetic field was applied to the dominant direction to find out how the degree of strength and weakness of the meridian changed. Ultimately, the magnetic therapy that can stimulate the magnetic field at the time of diagnosis and thereby balancing the interactive of a five system has been materialized. For the stimulation of magnetic field, a stimulating device which can change the direction and time on a specific part of the key measuring points has been developed and used. The therapeutic method is as follows. first, the strength and weakness of the meridian has been determined. Second, both the extremely weak meridian of Yin(Shade) and Yang(Shine), and the extremely strong meridian of Yin and Yang were adjusted by applying appropriate ascending and descending stimuli respectively.

  • PDF

반발식 자기 베어링의 응용으로서 고온 초전도체의 특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of the High Temperature Superconductor as an Application of the Repulsive Type Magnetic Bearing)

  • 유제환;임윤철
    • Tribology and Lubricants
    • /
    • 제13권2호
    • /
    • pp.52-59
    • /
    • 1997
  • An experimental study is presented for the characteristics of the high temperature superconductor as an application of the repulsive type magnetic bearing. A ring shaped YBCO type superconductor and Neodium permanent magnets are employed for the experiment. For the case of field cooling, superconductor shows strong repulsive force, which is due to the Meissner effect, as the gap between the superconductor and the magnet gets closer. The repulsive force variation with respect to the gap change shows hysterisis characteristics. The area of the loop of the hysterisis curve represents the dissipation of energy, which reveals that the magnetic bearing with superconductor has large damping. The effect of the initial gap and the magnetic flux density on the repulsive force is analyzed experimentally and the static stiffness variation is calculated from the measured repulsive force variation. The relative sliding velocity between the superconductor and the magnet has little effect on the repulsive force which is quite different from the usual sliding element bearing. As the initial gap for the field cooling becomes larger, the maximum repulsive force at the minimum gap increases and approaches to the value for the case of zero field cooling.

Transonic Magnetohydrodynamic Turbulence

  • LEE HYESOOK;RYU DONGSU;KIM JONGSOO;JONES T. W.
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.321-323
    • /
    • 2001
  • Compressible, magnetohydrodynamic (MHD) turbulence in two dimension is studied through high-resolution, numerical simulations with the isothermal equation of state. First, hydrodynamic turbulence with Mach number $(M)_{rms}\;\~$1 is generated by enforcing a random force. Next, initial, uniform magnetic field of various strengths with Alfvenic Mach number Ma $\gg$ 1 is added. Then, the simulations are followed until MHD turbulence is fully developed. Such turbulence is expected to exist in a variety of astrophysical environments including clusters of galaxies. Although no dissipation is included explicitly in our simulations, truncation errors produce dissipation which induces numerical resistivity. It mimics a hyper-resistivity in our second-order accurate code. After saturation, the resulting flows are categorized as SF (strong field), WF (weak field), and VWF (very weak field) classes respectively, depending on the average magnetic field strength described with Alfvenic Mach number, $(Ma)_{rms}{\ge}1$, $(Ma)_{rms}{\~}1$, and $(Ma)_{rms}{\gg}1$. The characteristics of each class are discussed.

  • PDF

자화율 차이로 인해 왜곡된 영상으로부터 금속 바늘의 위치 결정 (Determining the Location of Metallic Needle from MR Images Distorted by Susceptibility Difference)

  • 김은주;김대홍
    • Investigative Magnetic Resonance Imaging
    • /
    • 제14권2호
    • /
    • pp.87-94
    • /
    • 2010
  • 목적: 금속에 의한 영상 왜곡에 대한 정확한 계산하고 영상으로부터의 금속 물질의 위치 결정한다. 대상 및 방법: 주자기장과 일정 각도를 이루는 무한히 긴 비자성 금속 실린더에 대한 라플라스 방정식을 풀고, 이 결과를 이용하여 절편선택 경사자계와 주파수 부호화 경사자계에 의한 영상에 왜곡을 계산한다. 계산 결과를 바탕으로 하여 왜곡된 영상으로부터 원통형 보철물의 위치를 계산한다. 결과: Folded point와 금속 실린더의 중심 사이의 거리를 영상으로부터 측정하여 계산 결과와 비교한다. 측정 결과와 계산 결과 간의 퍼센트 오차는 한 경우를 제외하고 5% 이내였다. 결론: 금속 실린더가 자기장 하에 있을 때, 영상의 왜곡을 시뮬레이션 하였고, 이 기술은 생검술 또는 외과 수술 등을 자기공명영상법을 이용여 실시간 모니터링하는데 적용할 수 있을 것으로 기대한다.

SQUID 센서 기반의 극저자장 자기공명 장치를 위한 사전자화코일 전류구동장치 개발 (Development of Prepolarization Coil Current Driver in SQUID Sensor-based Ultra Low-field Magnetic Resonance Apparatuses)

  • 황성민;김기웅;강찬석;이성주;이용호
    • Progress in Superconductivity
    • /
    • 제13권2호
    • /
    • pp.105-110
    • /
    • 2011
  • SQUID sensor-based ultra low-field magnetic resonance apparatus with ${\mu}T$-level measurement field requires a strong prepolarization magnetic field ($B_p$) to magnetize its sample and obtain magnetic resonance signal with a high signal-to-noise ratio. This $B_p$ needs to be ramped down very quickly so that it does not interfere with signal acquisition which must take place before the sample magnetization relaxes off. A MOSFET switch-based $B_p$ coil driver has current ramp-down time ($t_{rd}$) that increases with $B_p$ current, which makes it unsuitable for driving high-field $B_p$ coil made of superconducting material. An energy cycling-type current driver has been developed for such a coil. This driver contains a storage capacitor inside a switch in IGBT-diode bridge configuration, which can manipulate how the capacitor is connected between the $B_p$ coil and its current source. The implemented circuit with 1.2 kV-tolerant devices was capable of driving 32 A current into a thick copper-wire solenoid $B_p$ coil with a 182 mm inner diameter, 0.23 H inductance, and 5.4 mT/A magnetic field-to-current ratio. The measured trd was 7.6 ms with a 160 ${\mu}F$ storage capacitor. trd was dependent only on the inductance of the coil and the capacitance of the driver capacitor. This driver is scalable to significantly higher current of superconducting $B_p$ coils without the $t_{rd}$ becoming unacceptably long with higher $B_p$ current.