• Title/Summary/Keyword: Strong Jet

Search Result 178, Processing Time 0.027 seconds

A Case Study of Mesoscale Snowfall Development Associated with Tropopause Folding (대류권계면 접힘에 의한 중규모 강설 발달에 대한 사례 연구)

  • Kim, Jinyeon;Min, Ki-Hong;Kim, Kyung-Eak;Lee, Gyuwon
    • Atmosphere
    • /
    • v.23 no.3
    • /
    • pp.331-346
    • /
    • 2013
  • A case study of mesoscale snowfall with polar low signature during 25~26 December 2010 in South Korea is presented. The data used for analysis include surface and upper level weather charts, rain gauge, sea surface temperature, satellite imagery, sounding, and global $1^{\circ}{\times}1^{\circ}$ reanalysis data. The system initiated with a surface trough near the bay of Bohai but quickly intensified to become a polar low within 12 hours. The polar low moved southeastward bringing snowfall to southwestern Korea. There was strong instability layer beneath 800 hPa but baroclinicty was weak and disappeared as the low progressed onto land. Shortwave at 500 hPa and the surface trough became in-phase which hindered the development of the polar low while it approached Korea. However, there were strong tropopause folding (~500 hPa) and high potential vorticity (PV), which allowed the system to maintain its structure and dump 20.3 cm of snow in Jeonju. Synoptic, thermodynamic, dynamic, and moisture analyses reveal that polar low developed in an area of baroclinicity with strong conditional instability and warm air advection at the lower levels. Further, the development of a surface trough to polar low was aided by tropopause folding with PV advection in the upper level, shortwave trough at 500 hPa, and moisture advection with low-level jet (LLJ) of 15 m $s^{-1}$ or more at 850 hPa. Maximum snowfall was concentrated in this region with convection being sustained by latent heat release.

Characteristic Analysis of Multicell Convective System that Occurred on 6 August 2013 over the Korean Peninsula (2013년 8월 6일 한반도에서 발달한 다세포(Multicell) 대류계의 특성 분석)

  • Yoon, Ji-Hyun;Min, Ki-Hong
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.321-336
    • /
    • 2016
  • Damages caused by torrential rain occur every year in Korea and summer time convection can cause strong thunderstorms to develop which bring dangerous weather such as torrential rain, gusts, and flash flooding. On 6 August 2013 a sudden torrential rain concentrated over the inland of Southern Korean Peninsula occurred. This was an event characterized as a mesoscale multicellular convection. The purpose of this study is to analyze the conditions of the multicellular convection and the synoptic and mesoscale nature of the system development. To this end, dynamical and thermodynamic analyses of surface and upper-level weather charts, satellite images, soundings, reanalysis data and WRF model simulations are performed. At the beginning stage there was a cool, dry air intrusion in the upper-level of the Korean Peninsula, and a warm humid air flow from the southwest in the lower-level creating atmospheric instability. This produced a single cell cumulonimbus cloud in the vicinity of Baengnyeongdo, and due to baroclinic instability, shear and cyclonic vorticity the cloud further developed into a multicellular convection. The cloud system moved southeast towards Seoul metropolitan area accompanied by lightning, heavy precipitation and strong wind gusts. In addition, atmospheric instability due to daytime insolation caused new convective cells to develop in the upstream part of the Sobaek Mountain which merged with existing multicellular convection creating a larger system. This case was unusual because the system was affected little by the upper-level jet stream which is typical in Korea. The development and propagation of the multicellular convection showed strong mesoscale characteristics and was not governed by large synoptic-scale dynamics. In particular, the system moved southeast crossing the Peninsula diagonally from northwest to southeast and did not follow the upper-level westerly pattern. The analysis result shows that the movement of the system can be determined by the vertical wind shear.

Spectra of Optical-field Ionized Gases by a Femtosecond Ti:Sapphire Laser

  • Mock, Tomas;Shin, Hyun-Joon;Cha, Yong-Ho;Lee, Dong-Gun;Hong, Kyung-Han;Nam, Chang-Hee
    • Journal of the Optical Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.50-53
    • /
    • 1998
  • We report on the spectroscopic investigation of optical-field ionized plasmas in the soft X-ray spectral region. The experiment was carried out by focusing pulses of the high-power Ti:Sapphire laser with an energy of ~ 40 mJ and time duration of ~30 fs into a gas jet of krypton, xenon, and argon from a pulsed nozzle. Strong soft X-ray emission on lines from ionic stages of $Kr^{7+} , Kr^{8+} , Xe^{7+} , Ar^{7+} , and Ar^{8+}$ is reported. The experimental result was found to be in good agreement with theoretical prediction.

Computation of Supersonic Ramp Flow with V2F Turbulence Mode (V2F 난류모형을 이용한 초음속 램프유동의 해석)

  • Park C. H.;Park S. O.
    • Journal of computational fluids engineering
    • /
    • v.8 no.2
    • /
    • pp.1-7
    • /
    • 2003
  • The V2F turbulence model, which has shown very good performance in several test cases at low speeds, has been applied to supersonic ramp flow with 20. corner angle at the free stream Mach number of 2.79. The flow is known to manifest strong shock wave/turbulent boundary layer interactions. As a comparative study, low-Reynolds k-ε models are also considered. While the V2F model predicts wall-pressure distribution well, it relatively predicts larger separation bubble and higher skin-friction after the reattachment than the experimental data. Although the ellpticity of f equation is the characteristics of incompressible flows, the converged solutions are acquired in the compressible flow with shock waves. The effect of the realizability constraints used in the model is also examined. In contrast to the result of impinging jet flows, the realizability bounds proposed by Durbin deterioate the overall solutions of the supersonic ramp flow.

Noise Reduction Performance of a Reactive type Silencer with Perforated Panels (다공판이 내장된 반사형 소음기의 소음저감 성능)

  • Lee, Sun-Ki;Lee, Young-Chul;Song, Hwa-Young;Lee, Dong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1415-1418
    • /
    • 2007
  • When a high voltage COS fuse becomes a short circuit by the over current, the impulse noise over 150 dB(A) with the strong pulse jet is radiated from the COS fuse of an electric transformer. For the purpose of the impulse noise reduction, in this study, a reactive type silencer with perforated panels are considered. The transmission loss of the silencer are calculated by transfer matrix method. The effect of the porosity, the distance between panels, and the number of perforated panel on the sound transmission loss is investigated and discussed.

  • PDF

Numerical Study on a Model Scramjet Engine with a Backward Step (후방단이 있는 모델 초음속연소기의 연소수치해석)

  • Moon, Guee-Won;Jeong, Eun-Ju;Lee, Byeong-Ro;Jeung, In-Seuck;Choi, Jeong-Yeol
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.3
    • /
    • pp.32-36
    • /
    • 2002
  • A numerical study was carried out to investigate combustion phenomena in a model Scramjet engine, which had been experimentally studied at the University of Tokyo using a high-enthalpy supersonic wind tunnel. The main airflow was Mach number 2.0 and the total temperature of hot flow was 1800K. Equivalence ratio was set to be 0.26 which is higher than that of experiment to investigate the effect of strong precombustion shock. The results showed that self-ignition occurred at the rear bottom wall of the combustor and combined with the shear layer flame between fuel jet and main airflow. Then, precombustion shock was generated at the step location and reversely enhanced the mixing and combustion process behind the shock. Due to the high equivalence ratio, the precombustion shock moved upstream of the step compared with that of experiment.

  • PDF

Numerical Study on a Model Scramjet Engine with a Backward Step (후방단이 있는 모델 초음속연소기의 연소수치해석)

  • Moon, G.W.;Jeung, I.S.;Jeong, E.J.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.127-132
    • /
    • 2001
  • A numerical study was carried out to investigate the combustion phenomena in a model Scramjet engine, which had been experimentally studied in the University of Tokyo using a high-enthalpy supersonic wind tunnel. The main airflow was 2.0 in Mach number and the total temperature of hot flow was 1800K. Equivalence ratio was set to be rather higher value of 0.26 than that of experiment to investigate the effect of strong precombustion shock. The results showed that self-ignition occurred at the rear bottom wall of the combustor and combined with the shear layer flame between fuel jet and main airflow. Then, precombustion shock was generated at the step location and reversely enhanced the mixing and combustion process behind the shock. Due to the high equivalence ratio, the precombustion shock moved upstream of the step compared with that of experiment.

  • PDF

NOx Production Characteristics of Offset-Opposed Impinging Jet Flame (Offset-대향 분출혐의 NOx 생성특징)

  • Seo, Jong-Won;Lee, Chang-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.1-9
    • /
    • 1999
  • The NOx production and combustion characteristics are experimentally compared with an offset with counter-orifice configuration. The offset-opposed impinging flame creates stronger vortex around the stagnation point than the opposed flame. The thermal and mass mixtures be improved and the delay of turbulence dissipation be occurred by the strong vortex. In result, the turbulent flame structure transferred from the wrinkled flame and the corrugated flame to the distributed reaction flame. It was found that the offset-opposed impinging flame decreased more NOx and improved the combustion efficiency than the opposed flame. The principal objective of this study is to develop the low NOx combustor by distributed reaction flame.

  • PDF

Characteristics of Flame Stabilization of the LFG Mixing Gas (LFG 혼합 연료의 화염 안정화 특성)

  • Kim, Sun-Ho;Oh, Chang-Bo;Lee, Chang-Eon;Lee, In-Dae
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.165-172
    • /
    • 1999
  • Landfill gas has merely half heating value compared with liquified natural gas but can be greatly utilized as a commercial fuel. The authors have examined emission characteristics as well as measured burning velocity of LFG mixed gas which contains plenty of $CO_{2}$. With the viewpoint of fuel utilization, flame stability could be one of important characteristics of LFG. In this study, the comparison experiments are conducted between $CH_{4}$ and LFG for searching the region of flame stabilization based upon the flame blowout at maximum fuel stream velocity. As a result, it is found that stabilization region of LFG is not improved with that of $CH_{4}$ in non-swirl/or weak swirl jet diffusion flame. However, it is also known that flame stability is hardly affected by inert gas in the strong swirl with considering widened flame stabilization region of LFG rather than LNG.

  • PDF

Effect of Surface-Modified Poly (4-vinyl phenol) Gate Dielectric on Printed Thin Film Transistor

  • Sung, Chao-Feng;Tsai, Hsuan-Ming;Lee, Yuh-Zheng;Cheng, Kevin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1771-1773
    • /
    • 2007
  • Surface modification of the gate dielectric has a strong influence on the performance of printed transistors. The surface modification occurs between the gate dielectric and semiconductor. The printed transistor with evaporated vanadium pentoxide ($V_2O_5$) modification exhibits a mobility of $0.2cm^2\;V^{-1}\;s{-1}$ and a subthreshold slope of 1.47 V/decade.

  • PDF