• Title/Summary/Keyword: Stroke prediction

Search Result 100, Processing Time 0.021 seconds

Prediction of Spread and Contact Region in Ring Rolling Process Using Rigid- plastic Finite Element Method (강소성 유한요소법을 이용한 링 압연 공정에서의 폭 퍼짐량 및 접촉영역 예측)

  • Ko, Young-Soo;Yoon, Hwan-Jin;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2670-2677
    • /
    • 2002
  • The ring rolling process involves three-dimensional non-steady material flow and continuous change of radius and thickness of the ring workpiece. In this study, the deformation analysis and geometric updating algorithm of the ring rolling process were verified by using the three-dimensional rigid-plastic finite element method. Manufacturing processes for plain ring and T-shaped ring were investigated by comparing experiments with simulation results, especially in side spread, load-stroke and pressure distribution, showing a good agreement. It was concluded that the simulation method would be a useful tool for the design of a ring rolling process.

Width Control of the Top and Bottom Ends of Steel Plate by Using Short-Stroke edging in Plate Mill (후판 선후단에서의 비정상변형부 폭제어기술)

  • 정대섭;남구원;천명식
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.429-437
    • /
    • 1999
  • Width variation of the top and bottom ends of steel at finishing rolling in a plate, has been investigated. It was found that width variation after finishing rolling is affected by edging, broadside rolling ratio, longitudinal rolling ratio, width shape after broadside rolling, temperature, width-to-thickness ratio, and so on. A neural network modelling of back propagation has been conducted on the width variation during rolling. Based on these prediction models, a width control system, by which the roll opening and closing of the hydraulic AWC edger can be adjusted during edge rolling in finishing rolling passes, has been developed. Compared to conventional width model, the neural network model is much accurate in a model. The width control system is applied to a newly built production mill.

  • PDF

A Study of Performance Prediction for 4-stroke Gasoline Engine (4행정 가솔린 기관의 성능 예측에 관한 연구)

  • 김형섭;장형성
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.1
    • /
    • pp.49-55
    • /
    • 1990
  • A comprehensive cycle simulation was developed to predict the performance of gasoline engine including intake and exhaust systems with variation of operating conditions and design factors. In this study, the gas exchange model, compression and expansion model, two-zone combustion model and heat transfer model were used. In order to confirm the feasibility of the simulation program, the calculated results were compared with experimental results. P-$\theta$ diagrams, I. M. E. P. and S. F. C by means of calculation showed acceptable quantitative agreement with the experimental data. Therefore, this program is particularly well adapted to indicating the direction of the optimal design and optimal operating conditions for gasoline engine.

  • PDF

Study on the Prediction of Performance and Emission in a 4-Cylinder 4-Stroke Cycle Turbocharged Gasoline Engine (First Paper) (4기통 4사이클 터보과급 가솔린 기관의 성능 및 배기조성 예측에 관한 연구 (제1보))

  • 유병철;이병해;윤건식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.25-38
    • /
    • 1988
  • As a mean of increasing engine power, great attention has been concentrated on the turbo-charging owing to better fuel economy, smaller engine size and lower emission. The performance in turbocharged engine depends not only on the efficiency of the engine and the turbocharger used, but also on the total characteristics of the system by the matching turbocharger to the engine. The matching of the turbocharger to the engine has been usually accomplished by the empirical techniques with a great deal of laborious work. It would be better to predict the performance and emission in the turbocharged engine using the effective simulation model. In this study, computer simulation program has been developed to predict the transient variation of properties of gas in the cylinder, intake and exhaust pipes, the engine performances and emissions.

  • PDF

A Numerical Study on In-cylinder Flow Fields of an Axisymmetric Engine (축대칭 엔진 실린더내의 유동장에 관한 수치적 연구)

  • 최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.662-670
    • /
    • 1999
  • A numerical prediction was performed to clarify the air motion in the cylinder of an axisymmet-ric four-stroke reciprocating engine at its intake and compression stage. A scheme of finite volume method is used for the calculation. Modified $k-{\varepsilon}$ turbulence model is adopted and wall function is applied to the grids near the wall. The predicted mean velocity and rms velocity profiles showed a reasonable agreement with an available experimental data at its intake and compression stage. The predicted in-cylinder flow fields show that a strong turbulent twin vortex structure is pro-duced during induction but it commences to decay rapidly around inlet valve closure. The mean velocity continues to fall to a low level during compression but the turbulence intensity attains an approximate constant level.

  • PDF

Development of Atomization Spraying System for Solvent-free Paint(I) - Flow Analysis of Hydraulic Actuator - (무용제 도료용 무화 분사시스템 개발(I) - 유압 엑츄에이터의 유동해석 -)

  • Kim, Dong-Keon;Kim, Bong-Hwan;Shin, Sun-Bin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.61-66
    • /
    • 2011
  • The purpose of this paper is to design a hydraulic actuator to operate under high pressure conditions. The flow characteristics under design conditions of hydraulic actuator were numerically conducted by commercial fluid dynamic code(ANSYS CFX V11). The numerical analysis was performed by transient technique according to the variation of stroke times, which was changed from 0 to 1 second by interval of 0.01. Turbulence model, $k-\omega$ SST was selected to secure more accurate prediction of hydraulic oil flow. The ICEM-CFD 11 and CFXMesher, reliable grid generation software was also adapted to secure high quality grid necessary for the reliable analysis. According to the simulation results, the flow rate which was supplied to the hydraulic actuator was 30.4l/min. These results are in good agreement with design results within 3.5% error.

A Unit Touch Gesture Model of Performance Time Prediction for Mobile Devices

  • Kim, Damee;Myung, Rohae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.277-291
    • /
    • 2016
  • Objective: The aim of this study is to propose a unit touch gesture model, which would be useful to predict the performance time on mobile devices. Background: When estimating usability based on Model-based Evaluation (MBE) in interfaces, the GOMS model measured 'operators' to predict the execution time in the desktop environment. Therefore, this study used the concept of operator in GOMS for touch gestures. Since the touch gestures are comprised of possible unit touch gestures, these unit touch gestures can predict to performance time with unit touch gestures on mobile devices. Method: In order to extract unit touch gestures, manual movements of subjects were recorded in the 120 fps with pixel coordinates. Touch gestures are classified with 'out of range', 'registration', 'continuation' and 'termination' of gesture. Results: As a results, six unit touch gestures were extracted, which are hold down (H), Release (R), Slip (S), Curved-stroke (Cs), Path-stroke (Ps) and Out of range (Or). The movement time predicted by the unit touch gesture model is not significantly different from the participants' execution time. The measured six unit touch gestures can predict movement time of undefined touch gestures like user-defined gestures. Conclusion: In conclusion, touch gestures could be subdivided into six unit touch gestures. Six unit touch gestures can explain almost all the current touch gestures including user-defined gestures. So, this model provided in this study has a high predictive power. The model presented in the study could be utilized to predict the performance time of touch gestures. Application: The unit touch gestures could be simply added up to predict the performance time without measuring the performance time of a new gesture.

Perfusion-Weighted MRI Parameters for Prediction of Early Progressive Infarction in Middle Cerebral Artery Occlusion

  • Kim, Hoon;Kim, Yerim;Kim, Young Woo;Kim, Seong Rim;Yang, Seung Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.4
    • /
    • pp.346-351
    • /
    • 2016
  • Objective : Early progressive infarction (EPI) is frequently observed and related to poor functional outcome in patients with middle cerebral artery (MCA) infarction caused by MCA occlusion. We evaluated the perfusion parameters of magnetic resonance imaging (MRI) as a predictor of EPI. Methods : We retrospectively analyzed patients with acute MCA territory infarction caused by MCA occlusion. EPI was defined as a National Institutes of Health Stroke Scale increment ${\geq}2$ points during 24 hours despite receiving standard treatment. Regional parameter ratios, such as cerebral blood flow and volume (rCBV) ratio (ipsilateral value/contralateral value) on perfusion MRI were analyzed to investigate the association with EPI. Results : Sixty-four patients were enrolled in total. EPI was present in 18 (28%) subjects and all EPI occurred within 3 days after hospitalization. Diabetes mellitus, rCBV ratio and regional time to peak (rTTP) ratio showed statically significant differences in both groups. Multi-variate analysis indicated that history of diabetes mellitus [odds ratio (OR), 6.13; 95% confidence interval (CI), 1.55-24.24] and a low rCBV ratio (rCBV, <0.85; OR, 6.57; 95% CI, 1.4-30.27) was significantly correlated with EPI. Conclusion : The incidence of EPI is considerable in patients with acute MCA territory infarction caused by MCA occlusion. We suggest that rCBV ratio is a useful neuro-imaging parameter to predict EPI.

Prediction of Infarction in Acute Cerebral Ischemic Stroke by Using Perfusion MR Imaging and $^{99m}Tc-HMPAO$ SPECT (급성 허혈성 뇌졸중에서 관류 자기공명영상과 99mTC-HMPAO 단광자방출단층촬영술을 이용한 뇌경색의 예측)

  • Ho Cheol Choe;Sun Joo Lee;Jae Hyoung Kim
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.1
    • /
    • pp.55-63
    • /
    • 2002
  • Purpose : We investigated the predictive values of relative CBV measured with perfusion MR imaging, and relative CBF measured with SPECT for tissue outcome in acute ischemic stroke. Material and Methods : Thirteen patients, who had acute unilateral middle cerebral artery occlusion, underwent perfusion MR imaging, and $^{99m}Tc-HMPAO$ SPECT within 6 hours after the onset of symptoms. Lesion-to-contralateral ratios of perfusion parameters were measured, and best cut-off values of both parameter ratios with their accuracy to discriminate between regions with and without evolving infarction were calculated. Results : Mean relative CBV ratios in regions with evolving infarction and without evolving infarction were $0.58{\pm}0.27$ and $0.9{\pm}0.17$ (p < 0.001), and mean relative CBF ratios in those regions were $0.41{\pm}0.22$ and $0.71{\pm}0.14$ (p < 0.001). The best cutoff values to discriminate between regions with and without evolving infarction were estimated to be 0.80 for relative CBV ratio and 0.56 for relative CBF ratio. The sensitivity, specificity and efficiency of each cutoff value were 80.6, 87.5, 82.7% for relative CBV ratio, and 72.2, 75.0, 73.0% for relative CBF ratio (p > 0.05 between two parameters). Conclusion Measurement of relative CBV and relative CBE may be useful in predicting tissue outcome in acute ischemic stroke.

  • PDF

Test and Simulation of An Engine for Long Endurance Miniature UAVs (장기체공 소형 UAV용 엔진 성능시험 및 시뮬레이션)

  • Shin, Young-Gy;Chang, Sung-Ho;Koo, Sam-Ok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.99-105
    • /
    • 2005
  • Development of an engine with good fuel economy is very important for successful implementation of long endurance miniature UAVs (unmanned aerial vehicles). In the study, a 4-stroke glow-plug engine was modified to a gasoline-fueled spark-ignition engine. Engine tests measuring performance and friction losses were conducted to tune a simulation program for performance prediction. It has been found that excessive friction losses are caused by insufficient lubrication at high speeds. The simulation program predicts that engine power and fuel economy get worse with high altitude due to increasing portion of friction losses. The simulation results suggest quantitative guidelines for further development of a practical engine.