• Title/Summary/Keyword: Stroke per minute(=SPM)

Search Result 2, Processing Time 0.016 seconds

A Study of Press Mechanism considering Dynamic Balance at High Speed Press (고속프레스에서 다이나믹 발렌스을 고려한 구동기구 연구)

  • Kim, J.E.;Hong, S.;Kim, J.;Heo, Y.M.;Cho, C.;Kang, J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.243-246
    • /
    • 2008
  • The press machine is actuated by the rotating motion of crank shaft and the reciprocating motion of slide. In recent years, unbalance moments and forces to the main frame attract many researches, as press technology becomes more miniaturized, precise, and rapid. In order to control vibrations caused by the rapid motions of the crank shaft and slide, this paper studies a resolution reducing the unbalance at the high speed knuckle press.

  • PDF

Kinematic Analysis and Dynamic Balancing Technique in a Link-Motion Mechanism (링크모션 메커니즘의 기구학적 분석 및 다이나믹 발란싱 테크닉)

  • Suh, Jin-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.498-502
    • /
    • 2004
  • In a link-motion mechanism, numerous links are interconnected and each link executes a constrained motion at a high speed. Due to the complicated constrained motions of the constituent links, dynamic unbalance forces and moments are generated and transmitted to the main frame. Therefore unwanted vibration is produced. This degrades productivity and precise work. Based on constrained multi-body dynamics, the kinematic analysis is carried out to enable design changes to be made. This will provide the fundamental information for significantly reducing dynamic unbalance forces and moments which are transmitted to the main frame. In this work, a link-motion punch press is selected as an example of a link-motion mechanism. To calculate the mass and inertia properties of every link comprising a link-motion punch press, 3-dimensional CAD software is utilized. The main issue in this work is to eliminate the first-order unbalance force and moment in a link-motion punch press. The mass, moment of inertia link length, location of the mass center in each link have a great impact on the degree of dynamic balancing which can be achieved maximally. Achieving good dynamic balancing in a link motion punch press is quite essential fur reliable operation at high speed.

  • PDF