• Title/Summary/Keyword: Strip tail

Search Result 18, Processing Time 0.032 seconds

Fundamental Study on Pinching Mechanism in Hot Strip Mill (사상 압연 공정에서 꼬임 발생 메커니즘에 대한 기초 연구)

  • 신기현;권순오;이창우;안영세;정동택;홍완기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1091-1096
    • /
    • 2003
  • It is very important to find out causes of strip pinching for the high quality of products and for the stable operation of hot roiling system. We have examined the strip pinching from three points of view to find out the causes of strip pinching in hot rolling system: strip shape, rolling operation conditions, and behavior of strip. Wedge, off center, and difference of rolling force through CMD are found to possibly provide major initial causes of strip pinching. Generally strip pinching occurred in the tail of strip. Thus, computer simulations by using a FEM code were also carried out to find out the initial mechanism of strip pinching depending upon the force and geometric boundary conditions at the time of strip tail rolling. The strong compression force effect due to the sudden release of strip tail from the work roll and non-uniform strip tail shape (ex. Tongue tail) across the CMD were found to provide possible major causes of strip pinching.

  • PDF

Fundamental Study on Mechanism of Strip Pinching in Rolling (압연 공정에서 꼬임 발생 메커니즘에 대한 기초 연구)

  • Lee Chang Woo;Shin Kee Hyun;Hong Wan Kee;Jung Dong Taek
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.127-132
    • /
    • 2004
  • It is very important to find out causes of strip pinching for the high quality of products and fer the stable operation of rolling system. We have examined the strip pinching from three points of view to find out the causes of strip pinching in rolling system: strip shape, rolling operation conditions, and behavior of strip. Wedge, off center, and difference of rolling force through CMD(Cross machine direction) are found to possibly provide major initial causes of strip pinching. Generally strip pinching occurred in the tail of strip. Thus, computer simulations by using a FEM code were also carried out to find out the initial mechanism of strip pinching depending upon the force and geometric boundary conditions at the time of strip tail rolling. The strong compression force effect due to the sudden release of strip tail from the work roll and non-uniform strip tail shape (ex. Fish tail) across the CMD were found to provide possible major causes of strip pinching.

Coiling Temperature Control of Strip Tail for Minimizing the Deviation of Mechanical Properties in Mini-Mill Process (Strip Tail부 재질 편차 감소를 위한 권취 온도 미단 제어 정도 향상)

  • 안종준;성영훈;백계주
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.57-65
    • /
    • 1999
  • This document illustrates the way to control of coiling temperature(CTC) of stip tail part in minimill process. The coiling temperature (CT) is very important fact in hot rolling process because the mechnical properties of strip depend on it. In mini-mill pocess, the speed pattern of rolling is different from that of conventional hot rolling. We have a lot of difficulties in controlling the coiling temperature at strip tail part, because after the strip tail is passed out the final stand, it's impossible to control the coiling temperature by using coiling speed. So we have CT deveiation in this gauge, about 160$^{\circ}C$ below in comparison with target CT. It's clear that deviation of mechanical properties(tensile strength, vield ratio etc) of strip to direction of length is so large, so we could not produce middle carbon steel, like this temperature condition. New coiling temperature control of strip especially in strip tail was developed. An innovative method for calculate the deceleration speed of strip tail has been implemented in CTC program, so called

  • PDF

Looper-Tension Control of Strip Top-Tail Parts for Hot Rolling Mills (열간압연공정의 스트립 선미단부 루퍼-장력 제어)

  • Hwang, I-Cheol
    • Journal of Power System Engineering
    • /
    • v.19 no.4
    • /
    • pp.24-29
    • /
    • 2015
  • This paper designs a looper-tension controller for strip top-tail parts in hot strip finishing mills. A three-degree linear model of the looper-tension system is derived by a Taylor's linearization method, where the actuator's dynamics are ignored because of their fast responses. A feedforward shaping controller for the strip top part and a feedforward model reference controller for the strip tail part are respectively designed, they are combined with an ILQ(Inverse Linear Quadratic optimal control) feedback controller for the strip middle part. It is shown from by a computer simulation that the proposed controller is very effective to the strip top-tail parts including the middle part.

Dynamic Edger Control for the Precise Width Control at the Head, and Tail Ends of Hot Strip (열연강판 선후단부 폭 정밀도 개선을 위한 최적 엣저롤 개도 제어)

  • Chun, Myung-Sik;Yi, Joon-Jeong;Moon, Young-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1196-1204
    • /
    • 1999
  • adaption of the model predictions is highly desirable. In general, the width deviation at the head and tail ends of strip may be different from that of the steady state region. Therefore, the dynamic edger corrections can be used to compensate the width deviations which would otherwise occur. For the precise width control, the effect of edger roll gap and rolling conditions on the width deviation of head and tail ends of strip has been investigated and the effective method to decrease width deviation has been proposed. On-line application of dynamic edger control method in this study shows about 50% width compensation at the head end of the strip, and near perfect compensation at the tail end of strip.

A SMA-based actuation system for a fish robot

  • Le, Chan Hoang;Nguyen, Quang Sang;Park, Hoon Cheol
    • Smart Structures and Systems
    • /
    • v.10 no.6
    • /
    • pp.501-515
    • /
    • 2012
  • We design and test a shape memory alloy (SMA)-based actuation system that can be used to propel a fish robot. The actuator in the system is composed of a 0.1 mm diameter SMA wire, a 0.5 mm-thick glass/epoxy composite strip, and a fixture frame. The SMA wire is installed in a pre-bent composite strip that provides initial tension to the SMA wire. The actuator can produce a blocking force of about 200 gram force (gf) and displacement of 3.5 mm at the center of the glass/epoxy strip for an 8 V application. The bending motion of the actuator is converted into the tail-beat motion of a fish robot through a linkage system. The fish robot is evaluated by measuring the tail-beat angle, swimming speed, and thrust produced by the tail-beat motion. The tail-beat angle is about $20^{\circ}$, the maximum swimming speed is about 1.6 cm/s, and the measured average thrust is about 0.4 gf when the fish robot is operated at 0.9 Hz.

Vision-Based Camber and Optimal Cutting Line Detection Algorithm for Hot-Rolling Process (열연 공정에서의 영상을 이용한 캠버 및 최적 절단선 검출 알고리즘)

  • Kong, Nam-Wong;Moon, Jung-Hye;Park, Poo-Gyeon
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.155-156
    • /
    • 2007
  • This paper presents the vision-based camber and optimal cutting line detection algorithm for hot-rolling process. It is important to measure the camber of head and tail part of strips because many problems are caused by the camber in the hot-rolling process. The hot-rolling process has time constraints. The camber detection algorithm of head and tail parts requires fast and less complex for satisfying time constraints. The proposed algorithm consists of two parts: measurement of the camber in the head and tail part of strips and decision part of the optimal cutting line of hot-rolled strip. First, we obtain the camber value of the strip from the difference between the real center line and the center line of head, tail part. Second, the head and tail part of strips isn't suitable for strips connections. Therefore, the cutting process is needed in the hot-rolling process. The optimal cutting line is determined by the head and tail images obtained from cameras. The algorithm is applied into the vision system with two area cameras, Matrox image processing board and host PC for verification.

  • PDF

The Control System Development of Crop Cutting in Hot Strip Mill.

  • Lee, Sang-Ho;Bae, H.M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.175.3-175
    • /
    • 2001
  • A control system for crop cutting in Hot strip Mill is developed. The development system is composed of three sub-systems. one is crop shape system which captures the shapes of the strip's head and tail using the area CCD camera. Another is Laser Speed System which measures the speed and length of strip. and, the other is control system which controls the optimal cutting length and crop shear motor. As a result, with a developed system we can reduce crop loss considerably.

  • PDF

Flatness Control System of the Hot Strip by Using Tension Profile between Stands (스탠드간 장력프로파일을 이용한 열연판 평탄도 제어시스템)

  • 홍완기;이준정
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.27-36
    • /
    • 1999
  • To have high flatness quality of hot rolled strip in the hot strip finishing mill train, a new inter-stand tension profile measuring device of segmented looper roll type(coined as Flatness Sensing Inter-stand Looper, FlatSIL) and a new flatness control system have been developed in this study. The device measures the strip tension profile across the strip width and informs the strip wave pattern to new flatness control system where work roll bending mode to relieve the strip wave is determined. The existing automatic shape control system which uses laser type shape-meter installed at the outlet of the last finishing mill stand strip tension between down coiler and last finishig mill since the latent wave concealed by the strip tension between down coiler and last finishing mill stand cannot be measured by the laser distance-meter. Thus the existing shape control system is not able to control the flatness through the full strip length. The new flatness control system, however, works for full strip length during strip rolling as far as the tension profile measuring device and work roll bender are on. With the new flatness control system, work roll bender is automatically controller to minimize the latent wave of the running strip and the flatness quality as well as strip travelling stability has been noticeably improved from strip head through body to tail.

  • PDF

Diagnosis of Thickness Quality Using Multivariate Statistical Analysis in Hot Finishing Mill

  • Kim, Heung-Mook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.116.3-116
    • /
    • 2001
  • A diagnosis methodology for thickness quality in hot finishing mill is proposed based on multivariate statistical analysis. The thickness of hot strip is a key quality factor that is measured by x-ray thickness gauge. Currently, the thickness quality is guaranteed by upper and lower limit of thickness deviation from target thickness. But if any over-limit is occurred, there is no in-line method to identify the causes. In this paper, many parameters are extracted from the thickness deviation signal such as mean deviation(top, middle, tail), rms deviation(top, middle, tail) and peak deviation(top, middle, tail) as time domain parameters ...

  • PDF