• Title/Summary/Keyword: Strip Theory

Search Result 214, Processing Time 0.018 seconds

Added Mass of Submerged Bodies Obtained by Forced Oscillation Tests and Numerical Calculations of Potential Flow (수중운동체의 강제동요시험 및 포텐셜 계산에 의한 부가질량 추정)

  • Kim, Dong Jin;Lee, Gyeong Joong;Kwon, Chang Seop;Kim, Yeon Gyu;Park, Jin-Yeong;Jun, Bong-Huan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.214-224
    • /
    • 2022
  • It is necessary to estimate manoeuvring characteristics of submerged bodies at the design stage in order to ensure the safe operations. In this study, added mass coefficients in the mathematical model of submerged bodies are estimated by captive model tests and numerical calculations. Two kinds of models, MARIN 'BB2'submarine model and AUV (Autonomous unmanned vehicle) model are utilized in the forced oscillation tests. Compared to BB2 submarine, AUV with cylindrical type hull form shows relatively small added masses in roll, pitch, and yaw directions. Next, numerical calculations based on potential theory are performed under the assumption that viscous effects on inertia forces are negligible. Added masses obtained by numerical calculations are in good agreements with forced oscillation test results. And if slow manoeuvres of submerged bodies are presumed, some of velocity coupled terms can be approximated by combinations of added mass coefficients.

A Study on the Probabilistic Analysis Method Considering Spatial Variability of Soil Properties (지반의 공간적 변동성을 고려한 확률론적 해석기법에 관한 연구)

  • Cho, Sung-Eun;Park, Hyung-Choon
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.111-123
    • /
    • 2008
  • Geotechnical engineering problems are characterized by many sources of uncertainty. Some of these sources are connected to the uncertainties of soil properties involved in the analysis. In this paper, a numerical procedure for a probabilistic analysis that considers the spatial variability of soil properties is presented to study the response of spatially random soil. The approach integrates a commercial finite difference method and random field theory into the framework of a probabilistic analysis. Two-dimensional non-Gaussian random fields are generated based on a Karhunen-$Lo{\grave{e}}ve$ expansion in a fashion consistent with a specified marginal distribution function and an autocorrelation function. A Monte Carlo simulation is then used to determine the statistical response based on the random fields. A series of analyses were performed to study the effects of uncertainty due to the spatial heterogeneity on the settlement and bearing capacity of a rough strip footing. The simulations provide insight into the application of uncertainty treatment to the geotechnical problem and show the importance of the spatial variability of soil properties with regard to the outcome of a probabilistic assessment.

A Study on the Characteristics of Motion Response of Stern Trawlers in Following Seas (선미식 트롤선의 추파중 선체동요특성에 관한 연구)

  • Kang, Il-Kwon;Park, Byung-Soo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.3
    • /
    • pp.226-233
    • /
    • 2002
  • In the field of research of sea keeping quality, much development has been made in recent years using the method of calculation based on the strip theory. It is very important to investigate the hull response of a fishing vessel in waves to ensure the safe navigation and fishing operation in rough seas by preserving excellent sea keeping qualities. For this purpose, the author measured various responses of three fishing vessels in waves using real sea experimental measuring system and analyzed the experimental data The results obtained can be summarized as follow. 1. The amplitudes of pitching motion in the experiments appeared low values with more than one peak occasionally in following sea and quartering sea, and the band width of those was found to be wide relatively. 2. The amplitudes of rolling motion in the experiments appeared high values with only one peak in following sea and quartering sea regardless of ship's tonnage, and the band width of those was found to be narrow relatively. 3. The comparisions of theoretical results with those of experiments for the pitching motions and rolling motion in following sea and quartering sea show that the theoretical values are higher slightly than those of experiments in both directions and the period at which the peak appears in the calculations and the experiments has good agreement approximately 4. The calculated responses of two vessels under a assumed wave of 2.2m height and 5.0sec period showed that the response of pitching motion of ship-A are 2.2 times bigger than those of ship-C in following sea and quartering sea, and the response of rolling motion of ship-A is 4.2 times bigger than that of ship-C in quartering sea.

Longitudinal Motion Analysis in Multi-Directional Irregular Waves for a Training Ship using Commercial Code (상용코드를 이용한 다방향 불규칙파중 실습선의 종운동해석)

  • Han, Seung-Jae;Kim, In-Cheol;Oh, Dea-Kyun;Lee, Gyoung-Woo;Gim, Ok-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.153-159
    • /
    • 2012
  • This study gives the vertical motion analysis in multi-directional irregular waves using a commercial code(MAXSURF v.16) based on linear strip theory for a training ship. To verify the commercial code prior to the analysis, we guarantees the reliability of this paper's results using the commercial code by comparing with the results(Flokstra, 1974) of same hull and experimental conditions on a Panamax container. The analysis conditions are Beaufort wind scale No. 5($\bar{T}=5.46$, $H_{1/3}=2m$) based on ITTC wave spectrum, encounter angle Head & bow seas($150^{\circ}$) and Froude number Fn=0.257. Finally, we calculates heave RAO, pitch RAO and obtains the result of ship's response spectra for heave and pitch motions. In the motion response spectrum under the multi-directional irregular waves, heave motion reacts slightly high in short-crested waves and pitch motion reacts high in long-crested waves.