• Title/Summary/Keyword: Strip Shape Control

Search Result 59, Processing Time 0.029 seconds

Development of The New Shape Control Algorithm with The Strip Thickness Decoupling in Hot Strip Mill

  • Dukbum Shin;Kim, Jongcheol;Sangchul Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.175.2-175
    • /
    • 2001
  • The strip profile and shape control is one of the most important technologies in Hot Rolling Mill System. Because the unbalance of strip´s shape and wave appearance between stands has a bad effect on Hot Rolling Mill System by making the inferior thickness, strip´s damage and so forth in factories. Many competition Plate Mill introduced shape control system, for example, pair cross-mill, work roll bender, which includes shape measuring instruments and shape control mathematical models. Shape meter, which is equipped for flatness, only does feedback control at the top of coil. And, for crown, we depend on initial setup value and there is no feedback control. Therefore we predict the shape of strip using rolling pressure, bender force and tension of inter-stand in ...

  • PDF

Flatness Control System of the Hot Strip by Using Tension Profile between Stands (스탠드간 장력프로파일을 이용한 열연판 평탄도 제어시스템)

  • 홍완기;이준정
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.27-36
    • /
    • 1999
  • To have high flatness quality of hot rolled strip in the hot strip finishing mill train, a new inter-stand tension profile measuring device of segmented looper roll type(coined as Flatness Sensing Inter-stand Looper, FlatSIL) and a new flatness control system have been developed in this study. The device measures the strip tension profile across the strip width and informs the strip wave pattern to new flatness control system where work roll bending mode to relieve the strip wave is determined. The existing automatic shape control system which uses laser type shape-meter installed at the outlet of the last finishing mill stand strip tension between down coiler and last finishig mill since the latent wave concealed by the strip tension between down coiler and last finishing mill stand cannot be measured by the laser distance-meter. Thus the existing shape control system is not able to control the flatness through the full strip length. The new flatness control system, however, works for full strip length during strip rolling as far as the tension profile measuring device and work roll bender are on. With the new flatness control system, work roll bender is automatically controller to minimize the latent wave of the running strip and the flatness quality as well as strip travelling stability has been noticeably improved from strip head through body to tail.

  • PDF

Simulation of Fuzzy Shape Control for Cold-Rolled Strip with Randomly Irregular Strip Shape (임의 불량형상을 갖는 냉연판의 퍼지형상제어 시뮬레이션)

  • Jung, Jong-Yeob;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.861-871
    • /
    • 1996
  • In this study, a fuzzy control algorithm was developed for the randomly irregular shape of cold-rolled strip. Currently developed fuzzy control algorithm consists of two parts: the first part calculates the changes of work and intermediate roll bender forces based on the symmetric part of the irregular strip shape, and the second part calculates the weighting factors based on the asymmetric part and modifies the pre-determined roll bender forces according to the weighting factors. As a result of this, bender froces applied at the both sides of the cold-rolled strip were different. In order to simulate the continuous shape control. fuzzy controller developed was linked with emulator which was developed based on neural network. The fuzzy controller and emulator developed simulated the cold rolling process until irregular shape converged to a tolerable range in producing uniform cross-sectional strip shape. The results obtained from the simulation were reasonable for various irregular strip shapes.

Automatic Control for Strip Shape At Stainless Cold Rolling Process (스테인레스 냉간 압연 강판의 폭 방향 형상의 자동 제어)

  • 허윤기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.180-180
    • /
    • 2000
  • The shape of cold strip for the stainless process has been become issue in quality recently, and hence POSCO (Pohang Iron & Steel Co., Ltd) developed an automatic control system for strip shape in the sendzimir mill. The strip shape is measured by an outward measuring roll and is controlled by As_U roll and first intermediate roll. As_U roll consists of 8 saddles, which are controlled vertically. The fist intermediate rolls, which are controlled horizontally, consist of two pairs of rolls up and down. A developed shape control system is applied to real plant by using fuzzy logic and neural network method to control actuators; As_U roll and first intermediate roll. This system composes mainly of three parts as a real-time system, input to output conditioner board, and man-machine interface. The actual shape is recognized by neural network and converted into symmetric shape. The fuzzy controller, based on the shape from neural network and sensor, controls positions of the As_U roll and first intermediate roll. This paper verifies the shape controller performance. The experiments are made on line for the sendzimir mill. The shape control performance shows very efficient for the target tracking, shape symmetry, and fluctuation of shape.

  • PDF

Simulation of Shape Control in Cold Rolling Using Fuzzy Control (퍼지제어를 이용한 냉연공정 형상제어 시뮬레이션)

  • 정종엽;임용택;진철제;이해영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.302-312
    • /
    • 1994
  • In this study, a fuzzy theory is introduced to control the cross-sectional strip shape in cold rolling. A fuzzy controller is developed based on the production data and the operational knowledge. The cold rolled products are characterized into several types based on their irregularities. For each type of irregular strip shape, fuzzy controller calculates the changes of bender forces of work and intermediate rolls using fuzzy control algorithm. To simulate the continuous shape control, fuzzy controller is linked with emulator which is developed using neural network. The developed fuzzy controller and emulator simulate the cold rolling process until the irregularities converge to the tolerable range to produce unifrom cross-sectional strip shape. The results from this simulation are reasonable for various irregular strip shapes.

Development of New Back-Up Roll for Strip Shape Control (형상제어를 위한 새로운 보강롤의 개발)

  • Lee, Won-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.327-333
    • /
    • 2003
  • Most of shape defects in steel strip are originated from the structure of rolling mill itself. For instance, strip crown occurs when the work roll is deformed by the bending moment induced on roll chocks. To get rids of the shape defects, it is necessary to increase the stiffness of rolling mill. The structure change of back-up roll is one of alternative ways to increase the mill stiffness without facility revamping from 4 high mill to 6 high mill. In this research work, the new back-up roll was developed and can be used in any type of 4 high mill to reduce the strip shape defects. The developed back-up roll consists of sleeve, arbor and phase angle adjusting system for arbor. The circumference of arbor is specially machined to adapt the strip width change during rolling. The experimental cold rolling test was done to prove the effectiveness of newly developed back-up roll. The experimental rolling results show that the new back-up roll has more powerful performance in reducing the shape defects than conventional back-up roll. It was also found that the new back-up roll has higher stability for shape control. In addition to, the only sleeve surface needs to be reground and changed in most cases, so that the maintenance cost can be greatly reduced.

Control Scheme Using Forward Slip for a Multi-stand Hot Strip Rolling Mill

  • Moon, Young-Hoon;Jo, I-Seok;Chester J. Van Tyne
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.972-978
    • /
    • 2004
  • Forward slip is an important parameter often used in rolling-speed control models for tandem hot strip rolling mills. In a hot strip mill, on-line measurement of strip speed is inherently very difficult. Therefore, for the set-up of the finishing mill, a forward slip model is used to calculate the strip speed from roll circumferential velocity at each mill stand. Due to its complexity, most previous researches have used semi-empirical methods in determining values for the forward slip. Although these investigations may be useful in process design and control, they do not have a theoretical basis. In the present study, a better forward slip model has been developed, which provides for a better set-up and more precise control of the mill. Factors such as neutral point, friction coefficient, width spread, shape of deformation zone in the roll bite are incorporated into the model. Implementation of the new forward slip model for the control of a 7-stand hot strip tandem rolling mill shows significant improvement in roll speed set-up accuracy.

Tension Control System for Hot Strip Mills (열간 압연 공정에서의 장력 제어시스템)

  • 박성한;안병준;황이철;홍신표;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.169-169
    • /
    • 2000
  • The modeling for the looper of a hot strip finishing mill to control the tension of the strip is presented. The looper is an arm pushing against the strip between stands in a tandem mill to keep the strip tension constant and to isolate the interactions of the adjacent stands. Tension is influenced by the difference in mass flow through the up stream and down-stream rolling stands. Tension is critical to strip quality, influencing width, gauge, and shape. This paper presents how looper angle and strip tension are controlled for a hot strip finishing mill.

  • PDF

Analysis of roll deformation for sendzimir rolling mill (젠지미어 압연기 롤 변형해석)

  • 이영호;김종택;한석영;이준정;김종근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1689-1699
    • /
    • 1990
  • Sendzimir rolling mill is widely used for rolling hard materials such as stainless steel due to its small work roll diameter and shape controllability using two effective actuators, AS-U-Roll crown adjustment and lst. intermediate roll shifting. However, in comparison with 4-high or 6-high mills, it is noteasy to get good strip or excellent flatness because Z-mill has small diameter of work rolls which are easily deformed by load. A new mathematical model based on the method of dividing roll and strip into multo-portions was used to develop strip profile prediction software. Using the developed software, several influencing factors related to rolled strip profile for Z-Mill were tested analytically and characterized for the effective shape control. The effects of adjusting shape control actuators of Z-Mill on strip profile were also examined and discussed in detail.

Technology of profile and shape control in the 6-high Tandem cold Rolling Mill (연속 6단 냉간압연기에서 Profile 및 형상제어 압연기술)

  • 박해두
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.142-149
    • /
    • 1999
  • Strip profile and shape control is one of the most important technologies in cold mill, especially for ultra-thin and wide cold strip. The 6-high mills, both of HCMW and UCMW mill, are known to be very effective for the shape controllability. The optimized values of these factors for set-up scheduling were analyzed and found that excellent strip control would be possible by controlling the combination of the influencing factors according to hot coil profile. The important considerations for operation were discussed for individual stand.

  • PDF