• Title/Summary/Keyword: Strip Bridge

Search Result 28, Processing Time 0.019 seconds

Finite strip analysis of multi-span box girder bridges by using non-periodic B-spline interpolation

  • Choi, C.K.;Hong, H.S.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.3
    • /
    • pp.313-328
    • /
    • 2001
  • A multi-span bridge has the peak value of resultant girder moment or membrane stress at the interior support. In this paper, the spline finite strip method (FSM) is modified to obtain the more appropriate solution at the interior support where the peak values of solution exist. The modification has been achieved by expressing the shape function with non-periodic B-splines which have multiple knots at the boundary. The modified B-splines have the useful feature for interpolating the curve with sudden change in curvature. Moreover, the modified spline FSM is very efficient in analyzing multi-span box girder bridges, since a bridge can be modeled by an assembly of strips extended along the entire bridge length. Numerical examples of the bridge analysis have been performed to verify the efficiency and accuracy of the new spline FSM.

A Study on the Characteristics of the Precision Blanking of Lead Frame (1): Influences of Blanking Process Variables (리드 프레임 타발공정의 전단특성에 관한 연구(1) -전단 공정 인자의 영향)

  • 임상헌;서의권;심현보
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.425-432
    • /
    • 2001
  • In order to investigate the influences of process parameters on the shape of lead frame, experimental study has been carried out. In the experiment, dimensional accuracy of the die sets, measurement accuracy has been managed carefully enough to simulate actual lead frame blanking process. With the blanking of square-shaped specimen, the effects of clearance, strip holding pressure and bridge width on the shape of blanked profile have been investigated. Experimental results show that the burnish ratio is increased as the clearance decreases. the strip holding pressure increases, and bridge width increases. Although the results seems to be similar to the ordinary blanking, the lead frame blanking shows a subtle different characteristics to the ordinary blanking due to the narrow bridge width.

  • PDF

An Experimental Evaluation of the Influences of Shearing Factors for the Process Design of Lead Frame Blanking (리드프레임 블랭킹 공정설계를 위한 전단영향인자의 실험적 평가)

  • 임상헌;서의권;심현보
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.679-682
    • /
    • 2001
  • An experiment is carried out to investigate the influences of shearing characteristic factors for the process design of lead frame blanking in copper alloy C194(t=0.205mm). 3 process parameters, e.g., clearance between die and punch, strip holding pressure, and bridge allowance are selected for this study. From the basis condition 6% clearance, 20N/$mm^2$, and 1.5t bridge allowance the seven times of experiment are done by varying the each factor. The square shape specimen is used to study the characteristics of shearing factors. The ratios of roll over, burnish, fracture zone are measured after blanking. The experimental analysis shows that the burnish ratio is decreased as the clearance increases. And the larger strip holding pressure is shown that the roll over and burnish ratio are both decreased. It is found that an optimal strip holding pressure is need for large burnish zone. Finally it is shown that the bridge allowance is less affected than clearance and strip holding pressure.

  • PDF

Finite strip method in probabilistic fatigue analysis of steel bridges

  • Li, W.C.;Cheung, M.S.
    • Steel and Composite Structures
    • /
    • v.2 no.6
    • /
    • pp.429-440
    • /
    • 2002
  • A finite strip method is developed for fatigue reliability analysis of steel highway bridges. Flat shell strips are employed to model concrete slab and steel girders, while a connection strip is formed using penalty function method to take into account eccentricity of girder top flange. At each sampling point with given slab thickness and modulus ratio, a finite strip analysis of the bridge under fatigue truck is performed to calculate stress ranges at fatigue-prone detail, and fatigue failure probability is evaluated following the AASHTO approach or the LEFM approach. After the failure probability is integrated over all sampling points, fatigue reliability of the bridge is determined.

Time domain buffeting analysis of long suspension bridges under skew winds

  • Liu, G.;Xu, Y.L.;Zhu, L.D.
    • Wind and Structures
    • /
    • v.7 no.6
    • /
    • pp.421-447
    • /
    • 2004
  • This paper presents a time domain approach for predicting buffeting response of long suspension bridges under skew winds. The buffeting forces on an oblique strip of the bridge deck in the mean wind direction are derived in terms of aerodynamic coefficients measured under skew winds and equivalent fluctuating wind velocities with aerodynamic impulse functions included. The time histories of equivalent fluctuating wind velocities and then buffeting forces along the bridge deck are simulated using the spectral representation method based on the Gaussian distribution assumption. The self-excited forces on an oblique strip of the bridge deck are represented by the convolution integrals involving aerodynamic impulse functions and structural motions. The aerodynamic impulse functions of self-excited forces are derived from experimentally measured flutter derivatives under skew winds using rational function approximations. The governing equation of motion of a long suspension bridge under skew winds is established using the finite element method and solved using the Newmark numerical method. The proposed time domain approach is finally applied to the Tsing Ma suspension bridge in Hong Kong. The computed buffeting responses of the bridge under skew winds during Typhoon Sam are compared with those obtained from the frequency domain approach and the field measurement. The comparisons are found satisfactory for the bridge response in the main span.

Design of Strip Bridge for Unsymmetrical Progressive Stamping for an Automotive Seat Side Cushion Pane (자동차 시트 사이드 쿠션 패널의 비대칭 프로그레시브 스탬핑 성형을 위한 스트립 브릿지 설계)

  • Hong, S.;Joung, C. S.;Choi, B. S.;Lee, D. Y.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.400-404
    • /
    • 2015
  • For mass production of stamped parts, which require complicated in-press operations, it is always advisable to use a progressive die set. It is difficult to choose a progressive die set if the stamped parts need to be deep drawn and especially if they are unsymmetrical. Because unsymmetrical deep drawing parts are very sensitive to the effect of weight during moving to the next step, they are hard to exactly locate on the die face. An automotive seat side cushion panel is about 80mm high, unsymmetrical and its low edge needs hemming, so it is hard to produce even using a progressive die set. In the current paper a progressive stamping for seat side cushion panel was examined. Five strip bridges were considered to be strong enough to move to the next die as predicted by the CAE analysis.

Cracking Behavior Of Reinforced Concrete Voided Slab Bridge (철근 콘크리트 중공슬래브 교량의 균열 거동)

  • 김인배;손혁수;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.763-768
    • /
    • 2000
  • In this study, the tests were performed on a series of reinforced concrete strip specimens to investigate a cracking behavior of reinforced concrete voided slab bridge. Also, the mid-span deflections, the crack widths and failure mode of reinforced concrete strip specimens were studied. It was found that serviceability of cracking and deflection at reinforced concrete voided slab bridge which were constructed and designed under verifying serviceability as design criteria are lower than common reinforced concrete member. On the basis of the experimental results, it is more reasonable concrete to evaluate crack occurring $f_r=2.0\surd{f_{ck}}$ rather than modulus of rupture of concrete, $f_r=0.8\surd{f_{ck}}$

  • PDF

Influence of Curbs and Median Strip on Wheel Load Distribution in Girder Bridges (거더교에서의 윤하중분배에 대한 연석과 중앙분리대의 영향에 관한 연구)

  • Oh, Byung-Hwan;Lim, Choon-Keun;Lew, Young;Kim, Kwang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.455-460
    • /
    • 2001
  • Generally, the contribution of curbs and median strip is not considered carefully in analysing and designing the girder bridges. There being curbs, the load given on interior girder relatively reduced and on exterior girder increased. Curbs and median strip reduce the load distribution factor by distributing the load given on girder fairly, In this paper, the Influence of curbs and median strip in wheel distribution through parameter study and lateral distribution test of PSC girder bridge was investigated. Finite-element analysis was performed with parameterizing the flexural rigidity of the girder, span length, girder spacing, median strip, curbs. The influence of curbs and median strip would increase with lowering rigidity of girder. In addition, curbs lower the load distribution factor of exterior and interior girders.

  • PDF

Aerostatic load on the deck of cable-stayed bridge in erection stage under skew wind

  • Li, Shaopeng;Li, Mingshui;Zeng, Jiadong;Liao, Haili
    • Wind and Structures
    • /
    • v.22 no.1
    • /
    • pp.43-63
    • /
    • 2016
  • In conventional buffeting theory, it is assumed that the aerostatic coefficients along a bridge deck follow the strip assumption. The validity of this assumption is suspect for a cable-stayed bridge in the construction stages, due to the effect of significant aerodynamic interference from the pylon. This situation may be aggravated in skew winds. Therefore, the most adverse buffeting usually occurs when the wind is not normal to bridge axis, which indicates the invalidity of the traditional "cosine rule". In order to refine the studies of static wind load on the deck of cable-stayed bridge under skew wind during its most adverse construction stage, a full bridge 'aero-stiff' model technique was used to identify the aerostatic loads on each deck segment, in smooth oncoming flow, with various yaw angles. The results show that the shelter effect of the pylon may not be ignored, and can amplify the aerostatic loading on the bridge deck under skew winds ($10^{\circ}-30^{\circ}$) with certain wind attack angles, and consequently results in the "cosine rule" becoming invalid for the buffeting estimation of cable-stayed bridge during erection for these wind directions.

Buffeting response of long suspension bridges to skew winds

  • Xu, Y.L.;Zhu, L.D.;Xiang, H.F.
    • Wind and Structures
    • /
    • v.6 no.3
    • /
    • pp.179-196
    • /
    • 2003
  • A long suspension bridge is often located within a unique wind environment, and strong winds at the site seldom attack the bridge at a right angle to its long axis. This paper thus investigates the buffeting response of long suspension bridges to skew winds. The conventional buffeting analysis in the frequency domain is first improved to take into account skew winds based on the quasi-steady theory and the oblique strip theory in conjunction with the finite element method and the pseudo-excitation method. The aerodynamic coefficients and flutter derivatives of the Tsing Ma suspension bridge deck under skew winds, which are required in the improved buffeting analysis, are then measured in a wind tunnel using specially designed test rigs. The field measurement data, which were recorded during Typhoon Sam in 1999 by the Wind And Structural Health Monitoring System (WASHMS) installed on the Tsing Ma Bridge, are analyzed to obtain both wind characteristics and buffeting responses. Finally, the field measured buffeting responses of the Tsing Ma Bridge are compared with those from the computer simulation using the improved method and the aerodynamic coefficients and flutter derivatives measured under skew winds. The comparison is found satisfactory in general.