• Title/Summary/Keyword: Strip Bending

Search Result 120, Processing Time 0.028 seconds

Experimental Verification of Set-Up Reference Values for the Determination of Downcoiling Tension in Hot Strip Mill (열간압연시 권취장력 설정기준치의 실험적 검증)

  • 공성락;강용기;김영환;문영훈
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.53-58
    • /
    • 2001
  • Set-up reference values, used in determining the optimum downcoiling tension, we experimentally verified in this study. During the actual downcoiling, the strip suffers both tension and bending force through the rotation of mandrel. Therefore, simulative test which can measure both tension and bending resistance of strip was performed to estimate set-up reference value for strip tension during downcoiling operations. The values obtained from the simulative test were correlated with the yield stress which has conventionally been used as reference values for downcoiling tension. The correlative analysis showed that the yield stress of strip can be a good reference value for downcoiling tension. Furthermore, the bending load also shows strong correlation with simulated values due to the close relationship between yield stress and bending load.

  • PDF

Development and validation of strip bending tester for measuring mechanical properties of freestanding thin films (자유지지 박막의 기계적 물성 측정을 위한 띠굽힘시험기의 개발 및 검증)

  • Park, Jung-Min;Kim, Jae-Hyun;Lee, Hak-Joo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.49-55
    • /
    • 2008
  • Strip bending test has been frequently utilized to measure the mechanical properties of freestanding thin films in substitute for the micro-tensile test. However, in spite of its simplicity and reliability, strip bending test has a few problems, for example, the measurement of strain and the calculation of stress at zero strain. In this study, these problems are precisely reviewed and proved. Upon this review, strip bending tester has been developed, which uses the confocal laser displacement meter to measure the deformed configuration of the specimen and the possibility and limitation of this testing system is carefully investigated including the estimation of uncertainty of the measurement of strain. Finally, to prevent errors and to improve the accuracy of this testing system, the shape of the specimen has been carefully studied and is proposed.

  • PDF

Mechanical characterization of 100 nm-thick Au thin film using strip bending test (띠 굽힘 시험을 통한 100 nm 두께 금 박막의 기계적 특성 평가)

  • Kim, J.H.;Lee, H.J.;Han, S.W.;Baek, C.W.;Kim, J.M.;Kim, Y.K.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.252-257
    • /
    • 2004
  • Nanometer-sized structures are being applied to many devices including micro/nano electronics, optoelectronics, quantum devices, MEMS/NEMS, biosensors, etc. Especially, the thin film with submicron thickness is a basic structure for fabricating these devices, but its mechanical behaviors are not well understood. The mechanical properties of the thin film are different from those of the bulk structure and are difficult to measure because of its handling inconvenience. Several techniques have been applied to mechanical characterization of the thin film, such as nanoindentation test, micro/nano tensile test, strip bending test, etc. In this study, we focus on the strip bending test because of its high accuracy and moderate specimen preparation efforts, and measure Au thin film, which is a very popular material in micro/nano electronic devices. Au film is deposited on Si substrate by evaporation process, of which thickness is 100nm. Using the strip bending test, we obtain elastic modulus, yield and ultimate tensile strength, and residual stress of Au thin film.

  • PDF

A Study on the Cross Rolling for Improvement of Flatness of Plate (판재의 편평도 향상을 위한 교차압연에 관한 연구)

  • Nam K. O.;Seo K. S.;Rho B. R.;Hong S. I.
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.43-48
    • /
    • 2005
  • The production of metal strip with uniform thickness and flatness are two important problems associated thin strip rolling. The thickness and flatness of strip are affected by the flattening of contact surface between strip and roll, the elastic recovery and the bending of roll. Especially, the flatness of the strip is greatly affected by bending deflection of roll. The roll must be designed considered the elastic deformation of roll. This study describes the measurement of thickness and flatness of strip and shows the crown roll for producing flat strip. But it is difficult to produce the crown roller. The cross rolling that is a simple method which can produce the flat strip is introduced and it is found the optimal cross angle for improvement of flatness of plate. These problems are solved by the MARC code on the basis of elastic-plastic material and the updated Lagrangian formulation.

A Study on the Mechanical Properties and Bending Formability Evaluation of the Spring Strip Materials (박판 스프링용 재료의 기계적특성과 굽힘가공성 평가 연구)

  • Won, S.T.;Lim, K.H.
    • Transactions of Materials Processing
    • /
    • v.15 no.9 s.90
    • /
    • pp.660-666
    • /
    • 2006
  • This study examined the mechanical properties and bending formability evaluation of spring strip materials(SK5 CSPH, STS 301 CSP-EH, C7701-H). The hardness test and tensile test were performed at room temperature($20^{\circ}C$) for mechanical properties. The U-bending test were carried out at various conditions of punch corner radius(Rp), ratio of punch comer radius/thickness(Rp/t) and ratio of clearance/thickness(Rp/t) and ratio of clearance/thickness(C/t) for bending formability evaluation.

Development of a Process Sequence Determination Technique by Fuzzy Set Theory for Electric Product with Piercing and Bending Operations (퍼지셋을 이용한 퍼어싱 및 굽힘공정을 갖는 전기제품의 공정순서 결정기법 개발)

  • Kim J.H.;Kim Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.137-146
    • /
    • 2005
  • This paper describes a research work to develop a computer-aided design for the product made by progressive working of bending and piercing. An approach to the system for progressive working is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of three main modules, which are input and shape treatment, flat pattern layout, strip layout modules. The system is designed by considering several factors, such as piercing and bending sequences by fuzzy set theory, complexities of blank geometry, punch profiles, and the availability of a press equipment. Strip layout drawing generated in the strip layout module is presented in 3-D graphic forms, including piercing and bending sequences with punch profiles divided into for external area. Results obtained using the modules enable the manufacturer for progressive working of electric products to be more efficient in this field.

A Study on the Development of Center Carrier Type Progressive Die for U-Bending Production Part

  • Sim, Sung-Bo;Lee, Sung-Taeg;Jang, Chan-Ho
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.80-85
    • /
    • 2002
  • The progressive die for U-bending production part is a very specific division. This study reveals the Sheet metal forming process with multi-forming die by Center Carrier type feeding system. Through the FEM simulation by DEFORM it was accepted to u-bending process as the first performance to design in strip process layout design. The next process of die development was studied according to sequence of die development.

  • PDF

An automated CAD System of Product with Bending Constraints and Piercing for Progressive Working (구속을 갖는 굽힘 및 피어싱용 제품의 프로그레시브 가공을 위한 자동화된 CAD 시스템)

  • Choe, Jae-Chan;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.174-182
    • /
    • 1999
  • This paper describes a research work of developing a computer-aided design of product with bending constraints and piercing for progressive working. an approach to the CAD system is based on the knowledge-based rules. Knowledge for the CAD system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written AutoLISP on the AutoCAD with a personal computer and is composed of four main modules, which are input and shape treatment, flat pattern layout, production feasibility check, and strip-layout module. Based on knowledge-based rules, the system is designed by considering several factors, such as radius and angle of bend, material and thickness of product, complexities of blank geometry and punch profile, bending sequence, availability of press. Strip layout drawing generated by piercing with punch profiles divide into automatically for external area is shown into graphic forms, including bending sequences for the product with piercing and bending constraints. Results obtained using the modules enable the designer and manufacturer of piercing and bending dies to be more efficient in this field.

  • PDF

Prediction of the wave induced second order vertical bending moment due to the variation of the ship side angle by using the quadratic strip theory

  • Kim, Seunglyong;Ryue, Jungsoo;Park, In-Kyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.259-269
    • /
    • 2018
  • In this study, the second order bending moment induced by sea waves is calculated using the quadratic strip theory. The theory has the fluid forcing terms including the quadratic terms of the hydrodynamic forces and the Froude-Krylov forces. They are applied to a ship as the external forces in order to estimate the second order ship responses by fluid forces. The sensitivity of the second order bending moment is investigated by implementing the quadratic terms by varying the ship side angle for two example ships. As a result, it was found that the second order bending moment changes significantly by the variation of the ship side angle. It implies that increased flare angles at the bow and the stern of ships being enlarged would amplify their vertical bending moments considerably due to the quadratic terms and may make them vulnerable to the fatigue.