• Title/Summary/Keyword: Stride time

Search Result 165, Processing Time 0.029 seconds

Effect of Heel Height and Speed on Gait, and the Relationship Among the Factors and Gait Variables

  • Park, Sumin;Park, Jaeheung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.39-52
    • /
    • 2016
  • Objective: This paper investigates gait changes according to different heel heights and speeds, and the interaction between the effects of the heel height and the speed during walking on stride parameters and joint angles. Furthermore, the relationship among heel height, speed and gait variables is investigated using linear regression. Background: Gait changes by heel height or speed have been studied respectively, but has not been reported whether there is an interaction effect between heel height and speed. It would be necessary to understand how gait changes when a person wears heels in different heights at various speeds, for example, high-heeled walking at fast speed, since it may cause unusual gait patterns and musculoskeletal disorders. Method: Ten females were asked to walk at five fixed cadences (94, 106, 118, 130 and 142 steps/min.) wearing three shoes with different heel heights (1, 5.4 and 9.8cm). Nineteen gait variables were analyzed for stride parameters and joint angles using two-way repeated measure analysis of variance and regression analysis. Results: Both heel height and speed affect movement of ankle, knee, spine and elbow joint, as well as stride length and Double/Single support time ratio. However, there is no significant interaction effect between heel height and speed. The regression result shows linear relationships of gait variables with heel height and speed. Conclusion: Heel height and speed independently affect stride parameters and joint angles without a significant interaction, so the gait variables are linearly amplified or diminished by the two factors. Application: Walking in high heels at fast speed should be careful for musculoskeletal disorders, since the amplified movement of knee and spine joint can lead to increased moment. Also, the result might give insight for animators or engineers to generate walking motion with high heels at various speeds.

Effects of the Head-Turn Gait on Gait Parameters in the Elderly (노인에서 머리회전을 동반한 보행이 보행변수에 미치는 영향)

  • Lee, Myoung-Hee;Chang, Jong-Sung
    • PNF and Movement
    • /
    • v.19 no.3
    • /
    • pp.435-440
    • /
    • 2021
  • Purpose: The purpose of this study is to investigate the effects of older adult's head-turn gait on gait parameters by comparing with head oriented forward gait and to provide criteria for their risk of falling compared to young adult. Methods: The subjects were 19 young adults in their 20s and 18 older adults in their 60s or above residing in Daegu or Gyeongsangbuk-do. To evaluate their gait parameters, spatiotemporal gait parameters were measured using a gait analysis tool (Legsys, BioSensics, USA) under two conditions: 1) walking while keeping one's eyes forward and 2) walking while turning the head. The measurement for each test was performed after one practice session, and the mean value of three measurements was analyzed. The collected data were statistically processed using a two-way analysis of variance (ANOVA) to compare any differences in gait parameters between the two groups under the two conditions. The statistical significance level was set at α=0.05. Results: According to the comparison of gait parameters in young adult and older adult between the head oriented forward gait and head-turn gait, statistically significant differences were observed in two parameters: stride length according to the height ratio and stride speed obtained by dividing the stride length according to the height ratio by time (p<0.05). Conclusion: The results of this study indicate that the head-turn gait causes greater differences in stride length and speed among older adult than in young adult and therefore can act as a cause of falling.

The Effect of Arm Swing on Gait in Post-Stroke Hemiparesis (팔 흔들기가 뇌졸중으로 인한 편마비 환자의 보행에 미치는 영향)

  • Kim, Jin-Seop;Kwon, Oh-Hyoun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.1
    • /
    • pp.95-101
    • /
    • 2012
  • Purpose : The purpose of this study was to investigate the variations in gait parameters according to arm swing use in post stroke hemiparesis. Methods : Sixteen patients participated in this study and walked at self-selected speeds on a Rs-scan systems. The were randomly assigned conditions: self-selected arm swing, constraint arm swing, emphasis arm swing. Results : In the comparison of parameters in each trial, both affected step length, non affected step length, affected stride length, non affected stride length, affected single support time, and non affected single support time were significantly increased and double support time was significantly decrease in emphasis arm swing when compared with both self-selected arm swing and constraint arm swing(p<.05). However, Asymmetrical ratio was significantly increased in both emphasis arm swing and self-selected arm swing when compared constraint arm swing(p<.05). Conclusion : Therefore, In this study, gait rehabilitation of patients with hemiplegia depending on what you need to apply the arm swing is considered.

Effect of Carrying Weight on the Gait of Elderly Women when using a Walking Assistant Vehicle

  • Roh, Hyo-Lyun;Son, Sung-Min;Kwag, Sung-Won
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • PURPOSE: This study was conducted to analyze the effects of carrying weight on the gait of elderly women using a walking-assistant vehicle (WAV) as the weight increased. METHODS: A total of 30 elderly women living in the local community were included as subjects and instructed to walk 50 m using a WAV loaded with sandbags corresponding to 0%, 5%, 10%, or 15% of their mean weight. The subjects' gait was analyzed using a gait analyzer to measure stride length, step length, step width, and gait time. RESULTS: Stride and step lengths were longest when carrying 5% of their weight and shortest when carrying 15% of their mean body weight. Step width and gait time were lowest when carrying weights corresponding to 5% and highest for 15% of their mean body weight. When observing gait with a WAV, the gait time was greatly affected by weights, with carrying weight equivalent to 5% of the body weight positively affected the gait with a WAV, whereas carrying weights of >15% resulted in slower gait speed. CONCLUSION: When walking with a WAV, an appropriate carrying weight of approximately 5% of the body weight stabilizes gait, while a weight of 15% leads decreased gait efficiency. Therefore, when using a WAV during outdoor activities, elderly women should add some weight to the WAV; however, the carrying weight should be <15% of the body weight.

Kinematic Analysis of Women's 100-m Final during IAAF World Championships, Daegu 2011 (2011 대구세계육상선수권대회 100 m 여자 결승전의 운동학적 분석)

  • Ryu, Ji-Seon;Ryu, Jae-Kyun;Kim, Tae-Sam;Park, Young-Jin;Hwang, Won-Seob;Yoon, Suk-Hoon;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.521-528
    • /
    • 2011
  • The purpose of this study was to analyze the kinematic characteristics of the finalists in the women's 100 m event to provide important information to coaches and athletes. Three different biomechanics techniques were applied for analyzing sprinter motion: LAVEG, a panning technique, and 12 video cameras for 3 dimensional analysis of the 40 m - 70 m portion of the race. Carmelita Jeter(USA) performed the maximum speed of 10.54 m/s at the distance of 58.2 m. There was a tendency to show a better performance time with a high number of steps (p=.13) and shorter stride length (p=.14) among the 8 sprints. Furthermore, the stride frequency and the performance time were negatively correlated as a higher stride frequency had a positive impact on the performance time (p=.02). Based on 3 dimensional analysis, the 4 top ranked sprinters used the different strategies to maintain a high COM (Center of Mass) velocity during the mid portion of the race (40 m - 70 m). Carmelita Jeter(USA) showed more flexed knee and hip motion at heel contact (HC) to maintain a high COM velocity while S.A. Fraser-Pryce (JAM) showed more extended knee and hip motion at HC. On the other hands, Veronica Campbell-Brown (JAM) and Kelly-Ann Baptiste (TRI) showed a tendency to have high knee lifts during the swing phase to maintain the high COM velocity during the race. These biomechanical analyses of the women's 100 m final event in the 2011 WC, Daegu, will provide important scientific information to coaches and athletes for understanding the sprinting mechanism of today's top-class sprinters.

Gait analysis on the condition of arm swing in healthy young adults

  • Koo, Hyun-Min;Lee, Su-Young
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.3
    • /
    • pp.149-154
    • /
    • 2016
  • Objective: The arm swing is associated with gait ability in healthy young adults. The purpose of this study was to examine the effects of arm swing during gait in healthy young adults. Design: Cross-sectional study. Methods: Forty-five subjects without any orthopedic or neurological injuries participated in this study. All subjects performed all three conditions according to the arm swing type as follows: first procedure (condition 1), walking as usual without arm swing constraint; second procedure (condition 2), constraint of dominant arm swing walking as usual; third procedure (condition 3), constraint of both arm swing walking as usual. Gait parameters such as gait velocity, stride length, cadence, step time, single limb support, and double limb support were measured in all arm swing conditions performed randomly, with the mean value obtained from three measurements. A rest period of 5 minutes was given to prevent repetition of each condition and learning effect. All data was analyzed using repeated measures ANOVA to notice the changes between arm swing conditions. Results: Within walking conditions, significant difference of gait velocity, stride length, cadence, and double limb support was noticed (p<0.05), except step time and single limb support. Gait velocity and stride length were significant reduced, and in cadence and double limb support were increased (p<0.05). Condition 3 had the most significant decrease of gait ability compared with condition 1 (p<0.05). Conclusions: These finding suggested that constraint arm swing conditions reduced gait ability in healthy young adults. Also, these findings can be utilized as a reference to future studies that not only pelvic, knee and ankle, but also upper limb affect to gait ability.

Development of WNS/GPS System Using Tightly Coupled Method

  • Yun, Cho-Seong;Park, Chan-Gook;Jee, Gyu-In;Lee, Young-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.114.5-114
    • /
    • 2001
  • In this paper, the model for personal navigation system using low-cost inertial sensors and error compensation method with GPS are proposed. Simulation is accomplished for the performance test. WNS(Walking Navigation System) is a kind of personal navigation using the number of a walk, stride and azimuth. Because the accuracy of these variables determines the navigational performance, computational methods have been investigated. The step is detected using the motion pattern by walking motion, stride is determined by neural network and azimuth is calculated with gyro´s output. The neural network filters off unnecessary motions. However, error compensation method is needed, because the error of navigation information increases with time ...

  • PDF

Comparison of Heel-rocking Time Between Young Women and Elderly Women (젊은 여성과 고령자 여성의 힐락킹 시간 비교 분석)

  • Yun, Ju-seok;Kim, Ji-Won;Kwon, Yu-Ri;Heo, Jae-Hoon;Jeon, Hyeong-Min;Jeon, Hee-Jun;Eom, Gwang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1242-1246
    • /
    • 2016
  • Heel rocking phase in gait cycle is from initial contact to forefoot contact. The purpose of this study was to investigate the effect of age on heel rocking time. Seven young women ($21.9{\pm}1.5yrs$) and seven elderly women ($74.1{\pm}6.7yrs$) participated in this study. Subjects wore the shoes equipped with pressure sensors and walked along 10 m walkway at comfortable speeds. Stride time, stance time, and heel rocking time were compared between groups. Stride time was not different between groups (p=0.087). Stance time was longer (p<0.001) but heel rocking time was shorter in the elderly than in the young (p<0.001). The shorter heel-rocking time in elderly women indicates less efficient shock-absorption in the heel-rocking phase, which might be related to the abnormal control and/or reduced performance of ankle dorsiflexors.

Kinematic Analysis of Women's Long Jump at IAAF World Championships, Daegu 2011 (2011 대구세계육상선수권대회 여자 멀리뛰기 경기의 운동학적 분석)

  • Kim, Ho-Mook;Woo, Sang-Yeon;Kim, Yong-Woon;Nam, Ki-Jeong;Park, Yong-Hyun;Seo, Jung-Suk
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.603-610
    • /
    • 2011
  • The long jump motions of 8 finalists in the women's long jump at the IAAF World Championships, Daegu 2011 were analyzed, and the kinematic characteristics of their techniques were investigated. The kinematic characteristics of the long jump motion of the 8 finalists were as follows. In the run-up phase, the length of the 2 stride was $108{\pm}6.92%$ that of the 3 stride. The length of the 1 stride was $91{\pm}5.78%$ that of the 2 stride. The change in the height of the center of gravity was $0.07{\pm}0.03$ m. The maximum velocity during the run-up phase was $9.44{\pm}0.13$ m at the 1 stride. In the take-off phase, the horizontal velocity, vertical velocity, reduction in horizontal velocity were $7.80{\pm}0.15$ m/s, $2.96{\pm}0.14$ m/s, and $1.64{\pm}0.19$ m/s, respectively. The minimum knee angle and take-off angle were $151{\pm}8.89^{\circ}$ and $20.7{\pm}1.03^{\circ}$, respectively. In the flight phase, the flight time and maximum height of the center of gravity were $0.78{\pm}0.03$ s, and $1.60{\pm}0.05$ m, respectively. In the landing phase, the landing length was $0.50{\pm}0.07$ m. The trunk angle, knee angle, and hip angle were $74{\pm}18.75^{\circ}$, $131{\pm}10.45^{\circ}$, and $82{\pm}9.03^{\circ}$, respectively. The kinematic characteristics of the motion of a good long jump were as follows. The reduction in the horizontal velocity in the take-off phase was minimized, and the maximum velocity of the run-up was maintained. The vertical velocity in the take-off phase was increased using a rapidly extended knee and high center of gravity.

Correlation between motor function and gait pattern of stroke patients (뇌졸중 환자의 운동기능과 보행 양상의 상관 관계)

  • Choi, Sanho;Lee, Ilsuk;Hong, Haejin;Oh, Jaegun;Sung, Kang-keyng;Lee, Sangkwan
    • The Journal of the Society of Stroke on Korean Medicine
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • ■ Objectives The goal of this study is to find the correlation between the motor function and gait pattern of stroke patients. ■ Methods We measured Manual muscle test(MMT), Motricity index(MI) and Spatiotemporal gait parameters of admitted hemiplegic patients with stroke. The gait parameters were measured using a Treadmill gait system. ■ Results There is a significant correlation between motor function and spatiotemporal parameters such as step length, stride length, step time, stride time, total double support or cadence, in stroke patients. ■ Conclusion The better motor function of stroke was, the more gait improved.

  • PDF