• 제목/요약/키워드: Striation Spacing

검색결과 6건 처리시간 0.016초

Zr-2.5Nb 압력관에서 Striation Spacing과 DHCV의 관계 (A Correlation of Striation Spacing and DHC Velocity in Zr-2.5Nb Tubes)

  • 최승준;안상복;박순삼;김영석
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1109-1115
    • /
    • 2004
  • The objective of this study is to elucidate what governs delayed hydride cracking (DHC) in Zr-2.5Nb tubes by correlating the striation spacings with DHCV(DHC Velocity). To this end, DHC tests were conducted on the compact tension specimens taken from the Zr-2.5Nb tubes at different temperatures ranging from 100 to $300^{\circ}C$ with a 3 to 6 data set at each test conditions. The compact tension specimens were electrolytically charged with 27 to 87 ppm H before DHC tests. After DHC tests, the striation spacings and DHCV were determined with the increasing the test temperature and yield strength. The striation spacing and DHCV increased as a function of yield $strength^2$ and the temperature. Since the plastic zone size ahead of the crack tip can be represented by ${\sim}(K_{IH}/{\sigma}_{Y})^2$, we conclude that the striation spacing is governed by the plastic zone size which in turn determines a gradient of hydrogen concentration at the crack tip. The relationship between the plastic zone size and the striation spacing was validated through a complimentary experiment using double cantilever beam specimens. Two main factors to govern DHCV of Zr-2.5Nb tubes are concluded to be hydrogen diffusion and a hydrogen concentration gradient at the crack tip that are controlled by temperature and yield strength, respectively. The activation energy of DHCV in the Zr-2.5Nb tubes is discussed on the basis of temperature dependency of hydrogen diffusion and the striation spacing.

FEM과 Striation을 이용한 로커 암 축의 파손응력 추정 (Prediction of Failure Stress of Rocker Arm Shaft using FEM and Striation)

  • 이수진;이동우;홍순혁;조석수;주원식
    • 한국정밀공학회지
    • /
    • 제24권3호
    • /
    • pp.84-90
    • /
    • 2007
  • As a result of vehicle maintenance of rocker arm shaft for 4-cylinder SOHC engine, failure stress analysis of rocker arm shaft is needed. Because more than 30% of vehicles investigated have been fractured. Failure stress analysis is classified into an naked eyes, microscope, striation and X-ray fractography etc. Failure stress analysis by using striation is already established technology as means for seeking cause of fracture. But, although it is well known that striation spacing corresponds to the crack growth rate da/dN, it is not possible to determine ${\sigma}_{max}\;and\;{\sigma}_{min}$ under service loading only from striation spacing. This is because the value of striation spacing is influenced not only by ${\Delta}K$ but also by the stress ratio R. In the present paper, we determine the stress ratio using orthogonal array and ANOVA, and propose a prediction method of failure stress which is combined with FEM and striation.

알루미늄 합금의 랜덤하중 하에서 발생한 피로파면 해석 방법 (Fractographic Analysis Method of Fatigue Fracture Surface under Program and Random Loading for Aluminum Alloy)

  • 김상태;최성종;양현태;이희원
    • 대한기계학회논문집A
    • /
    • 제27권12호
    • /
    • pp.2055-2060
    • /
    • 2003
  • Striation is a typical pattern observed on the fatigue fracture surface and the spacing is known to correspond to a macroscopic fatigue crack growth rate, and many models for the predict in the formation of such striation have been proposed. However, these theories and methods can't be applied under random loading spectrum. In this study, the fatigue tests were carried out on aluminum alloy under random loading spectrum. The fatigue fracture surfaces were observed in the scanning electron microscope (SEM) and great quantities of SEM micrographs were synthesized and saved in computer system. The space and morphology of several large-scale striations, which are expected to from at the relatively greater load range in loading block, were observed. The crack length for each loading blocks was decided in consideration of regularity and repetition of those striations. It is shown that the applicability of fractographic methods on the fatigue fracture surface under random loading spectrum.

2상계 스테인리스강 용접부의 피로크랙전파 특성 (III) (Fatigue Crack Propagation Characteristics of Duplex-Stainless Steel Weldment (III))

  • 이택순;권종완
    • 대한기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.901-910
    • /
    • 1989
  • 본 연구에서는 2상계 스테인리스강의 모재 및 용접부에 대하여 대기중의 피로시험과 인공해수중의 부식피로 시험을 모재부와 용접부의 .alpha.,.gamma.상의 상비율 변화에 따른 조직의 변화 및 용접잔유응력의 영향이 크랙전파에 미치는 영향을 검토하였다. 응력-스트레인의 히스테리스곡선에서 균열닫힘 거동을 실측하고 이들의 결과로 부터 유효응력확대계수와 균열전파속도와 관계를 정리하여 이들의 문제를 해석하였다.

합금속의 수소취성과 응력부식균열 고찰 (Review on Delayed Hydride Cracking and Stress Corrosion Cracking of Metals)

  • 김영석;정용무;임경수
    • 한국수소및신에너지학회논문집
    • /
    • 제15권4호
    • /
    • pp.266-273
    • /
    • 2004
  • The objective of this study is an understanding of stress corrosion cracking of metals that is recognized to mostly limit the lifetime of the structural materials by comparing the features of delayed hydride cracking of zirconium alloys with those of stress corrosion cracking (SCC) of Ni-based alloys and hydrogen cracking of stainless steels. To this end, we investigated a dependence of delayed hydride cracking (DHC) velocity on the applied stress intensity factor and yield strength, and correlated a temperature dependence of the striation spacing and the DHC velocity. We reviewed a similarity of the features between the DHC of zirconium alloys, the SCC of Ni-based alloys and turbine rotor steels, and the hydrogen cracking of stainless steels and discussed the SCC phenomenon in metals with our DHC mode.