• Title/Summary/Keyword: Stretching-Mapping Method

Search Result 6, Processing Time 0.021 seconds

Quantification of the Mixing Effect by Using the Method of Material-Stretching Mapping (물질신장 사상법에 의한 혼합효과의 정량화)

  • Suh Y. K.
    • Journal of computational fluids engineering
    • /
    • v.9 no.4
    • /
    • pp.20-33
    • /
    • 2004
  • In this study a stretching-mapping method is proposed for calculating the materials' stretching exponents, which are to be used in quantification of the mixing effect. In this method, the mapping tensor associated with the deformation of each fluid material is first obtained. Then deformations of a lot of materials are obtained by applying the mapping tensor. The local stretching rates and their space-average values are next computed with the mapped deformations. Application to a simple time-periodic flow within a cavity shows that the method is indeed effective compared with the conventional method; i.e. the mapping method is fast and yields the same results as the conventional one.

Analysis of the Stokes Flow and Stirring Characteristics in a Staggered Screw Channel (엇갈림형 스크류 채널 내부의 스톡스 유동과 혼합특성 해석)

  • Suh Y. K.
    • Journal of computational fluids engineering
    • /
    • v.9 no.4
    • /
    • pp.55-63
    • /
    • 2004
  • The three-dimensional Stokes flow within a staggered screw channel is obtained by using a finite volume method. The geometry is intended to mimic the single screw extruder having staggered arrangement of flights. The flow solution is then subjected to the analysis of the stirring performance. In the analysis of the stirring performance, the stretching-mapping method developed by the author is employed for calculating the materials' stretching exponents, which are to be used in quantification of the mixing effect. The numerical results Indicate that the staggered geometry gives indeed far much better stirring-performance than the standard (nonstaggered) flight geometry. It was also shown that care must be given to the selection of the basis planes for evaluating the local stretching rate, and it turns out that the best method (H-method) has its basis plane just on the half way between the past and future evolution of fluid particles subjected to the defromation. In evaluating the stretching exponent, the expansion ratio must be considered which is one of the characteristic differences of the actual three-dimensional flows from the two-dimensionmal counterparts. The larger axial pressure-difference causes in general the smaller stirring performance while the flow rate is increased. The smaller channel length also increases the stirring performance.

Method of Material-Stretching Mapping for Quantification of Mixing Effect in Microchannels (마이크로 채널 내의 혼합효과 정량화를 위한 물질신장 사상법)

  • Suh Y. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.1-13
    • /
    • 2005
  • Fluid flows within microchannels are characterized by low Reynolds numbers. Therefore the effect of mixing is a crucial factor in design of the channels. Since the action of the electro-osmotic or magnetic forces used in the mixing enhancement is usually periodic in the three-dimensional channel configuration, use of the various concepts of chaotic advection is reasonable in the quantification of the stirring effect. In this paper, the details of the method of material-stretching mapping is explained. The actual application of the method to the screw extruder is also presented.

  • PDF

Application of a mapping method for mixing analysis of micromixers (마이크로믹서의 혼합해석을 위한 매핑법 적용)

  • Kang, Tae-Gon;Singh, Mrityunjay K.;Anderson, Patrick D.;Kwon, Tai-Hun;Meijer, Han E.H.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1758-1760
    • /
    • 2008
  • Under typical operating conditions, flows in microfluidic devices are laminar and molecular diffusion across the channels is slow, which makes an efficient mixing in microfluidic devices difficult to achieve. The mechanism to achieve effective mixing in laminar flows is that of repetitive stretching and folding. Essential is to generate spatially periodic flows with crossing cross sectional streamlines. A mapping method is employed to analyze mixing in micromixers, enabling us to investigate the progress of mixing both qualitatively and quantitatively. The progress of mixing is characterized by a measure of mixing, called the discrete intensity of segregation. The mapping method is applied to mixing in such micromixers as the staggered herringbone mixer, the barrier embedded micromixer, and the three-dimensional serpentine channel to demonstrate the capability of the numerical scheme to tackle general mixing problems in microfluidic devices.

  • PDF

Development of a Surface-Strain Measurement System Using the Image Processing Technique (화상처리법을 이용한 곡면변형률 측정 시스템의 개발)

  • Han, Sang-Jun;Kim, Yeong-Su;Kim, Hyeong-Jong;O, Su-Ik
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.575-585
    • /
    • 1998
  • An automated surface-strain measuring system using the image processing technique is developed in the present study which consists of the hardware to capture and to display digital images. and the software to calculate the 3-D informations of grid points from two views. New or improved algorithms for the mapping and establishing correspondence of grid points and elements the camera calibration and the subpixel measurement of grid points are implemented. As an application of the present system the surface-strains of deformed blanks in the limitting dome height test the square cup deep-drawing and punch stretching to obtain the forming limit diagram are measured. The results are com-pared with those obtained by conventional manual methods.

  • PDF

3D Environmental Walkthrough Using The Integration of Multiple Segmentation Based Environment Models (다중 분할 기반 환경 모델의 통합에 의한 3차원 환경 탐색)

  • Ryoo, Seung-Taek
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.1
    • /
    • pp.105-115
    • /
    • 2005
  • An environment model that is constructed using a single image has the problem of a blurring effect caused by the fixed resolution, and the stretching effect of the 3D model caused when information that does not exist on the image occurs due to the occlusion. This paper introduces the registration and integration method using multiple images to resolve the above problem. This method can represent parallax effect and expand the environment model to represent wide range of environment. The segmentation-based environment modeling method using multiple images can build a detail model with optimal resolution.

  • PDF