• Title/Summary/Keyword: Stretch Forming

Search Result 88, Processing Time 0.022 seconds

Design of automotive inner panel by sectional forming analysis (단면성형 해석에 의한 자동차 내부 판넬의 설계)

  • 금영탁;왕노만
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.48-59
    • /
    • 1990
  • A finite element program was developed using line elements for simulating the stretch/draw forming operation of an arbitrarily-shaped plane-strain section. An implicit, incremental, updated Lagrangian formulation is employed, introducing a minimum plastic work path assumption for each time step. Geometric and material nonlinearities are also considered within each time step. The finite element equation is based on the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The membrane approximation is adopted under the plane stress assumption. The sheet material is assumed to obey a rigid-viscoplastic constitutive law. The developed program was tested in the die-tryout of typical automotive inner panels. In order to determine a single friction coefficient and boundary length, FEM results and measurements of thinning for a stretched section of final die were compared. After finding analysis parameters, the sheet forming operations of original and final die designs were simulated. Excellent agreement between measured and computed thickness strains was obtained and the developed program was able to identify die designs which were rejected during die tryout.

  • PDF

Development and application of FEM/GEM program for evaluating formability of stamping dies (스탬핑 금형의 성형성 평가를 위한 유한요소/기하학힘평형법 프로그램 개발과 응용)

  • Kim, J.P.;Keum, Y.T.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.80-93
    • /
    • 1996
  • A 2-dimensional FEM/GEM program was developed under the plane strain assumption using linear line elements for analyzing stretch/draw forming operations of an arbitrarily shaped draw-die. FEM formulation adopted a new algorithm for solving force equilibrium as well as non-penetration condition simultaneously. Also, a rigid-viscoplastic material model with Hill's normal anisotropic yield condition and rate-sensitive hardening law is assumed, along with the Coulomb friction law in the contact regions. For the case of numerical divergence at nearly final forming stages, geometric force equilibrium method(GEM) is also introduced. The developed program was tested by simulating the forming processes of cylindrical punch/open die, and the drawing processes of automotive oilpan and hood inner panel in order to verify the usefulness and validity of FEM/GEM formulation. The numerical simulation verified the validity and robustness of developed program.

  • PDF

A numerical study on blow molding for manufacturing PET bottle consisted of single body (손잡이 일체형 PET 용기 제작을 위한 블로우 성형에 대한 수치적 연구)

  • Kim, Jong-Duck;Go, Young-Bae;Kim, Hong-Ryul;Kwon, Chang-Oh
    • Design & Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.22-27
    • /
    • 2008
  • Forming of PET bottle was performed by injection-stretch blow molding. Blow molding is process of contacting the dies with air of materials by pressing. In this paper, the aim was to improve reliability of technical stabilization for the PET bottle that is last productive product and process technology which was able to do maximization by a preform performance enhancement of the uniform thickness that took temperature and a characteristic of materials. Preform design and dies manufacture were conducted using injection blow molding analysis results. Therefore thickness error of 5% for PET bottle can be obtained in this paper.

  • PDF

An Experimental Study On The Formability of Aluminum 1050 and 5052 Sheet Metal (Al 1050, 5020 판재의 성형성에 관한 실험적 고찰)

  • 강용기;박진욱;문영훈
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.27-34
    • /
    • 2000
  • Sheet metal formabilities for aluminum 1050 and 5052 were experimentally investigated in this study. Deep drawability, bendability and stretch formability were measured at each process condition and correlated with tensile properties of sheet metal. To compare the formabilities of aluminum 1050 and 5052 sheets with those of steel sheets, deep drawing quality(DDQ) steel sheets are also tested at the same test conditions. Through the experimental studies, influential process variables for each forming process were obtained and correlated with the tensile properties. The comparisons of sheet metal formabilities with those of steed sheets showed that aluminum 1050 and 5052 is inherently deficient in formability than steel sheets but Al 5052 that has highter n and r value than al 1050 showed better formabilities.

  • PDF

Identification of Forming Limits of Sheet Metals for Automobile Parts by Asymmetric Deep-drawing Experiments (비대칭 시편의 딥드로잉 실험에 의한 박판금속의 성형한계도)

  • Heo, Hun;Lee, Chung-Ho;Jeong, Jae-Ung
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.81-93
    • /
    • 1998
  • Identification of forming limits of sheet metals is an important task to be done before the sheet metal forming processes. The information of the forming limit is indispensable for design of deformed shapes and related forming processes. This procedure becomes more important than ever as the auto-body becomes complicated and the number of auto-body parts is reduced for lower production cost. To identify the forming limit of sheet metals stretching with a hemispherical punch has gained popularity because of the convenient experimental procedure. The stretching experiment however has localized deformation or the shear band is originated from the non-unifrom deformation in the critical circum-stance instead of the absolute criterion. More accurate information of the forming limit therefore could be obtained by a more appropriate experiment to the real process. In this papaer an experiment program is devised to practivally identify the forming limits of sheet metals for auto-body parts. The experiment program contains not only stretching but deep-drawing Both forming experiments use the same hemispherical punch while they use different specimens. Deep-drawing experiments use speci-mens cut out in circular arc on both sides of circular blank to make it torn during the deep-drawing They also use speciments cut out straight in one side of a circular blank to make it deformed unevenly which causes local deformation during the deep-drawing. The experimental result demonstrates that the forming limit diagrams in the two cases show difference in their effective magnitude. The forming limit curve from deep-drawing is located lower than that from stretching. It is noted from the result that the deep-drawing process causes acceleration of localized deformation in comparison with the stretching process. From the experimental result the maximum value of forming limit could be pre-dicted for safe design.

  • PDF

Press Forming of Extruded Aluminum Profile for Automotive Parts (자동차 부품용 알루미늄 압출재의 프레스 성형기술)

  • Choi Young;Park Joon-Hong;Kang Myun-Gyu;Oh Kae-Hee;Park Sang-Woo;Yeo Hong-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.51-58
    • /
    • 2006
  • The necessities for heightening fuel efficiency as well as lightweight design, lead to an increase of the use of aluminum alloys in the automobile industry. Extruded aluminum profile channels are used widely for the design of frame parts as lightweight assemblies, especially if a high stiffness is needed. While many applications can be realized with forming of hollow square-sectioned extruded profiles such as a stretch bending and a hydro-forming, some applications demand the use of a press bending which can be hardly found in the previous study. In this study, by introducing the use of a press bending into car sub-frames, the demands for higher accuracy as well as higher flexible method than the conventional methods will be satisfied. With respect to the design of sub-frames, the process planning was performed from the shape of a sub-frame product. The designed processes were analyzed by the commercial FEM code, DEFORM-3D. Forming dies for the each process were designed and prototypes of sub-frames were manufactured by the verified farming process. In addition, some of the important features of design parameters in the press bending were reviewed.

Elastic-Plastic Finite Element Analysis of Sheet Metal Forming Processes(II) - Analysis of Metal Forming Processes with Contact Condition - (탄소성 유한요소법에 의한 박판성형 공정의 해석 II - 접촉 조건을 가지는 박판성형 공정의 해석 -)

  • 심현보;정완진;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1129-1137
    • /
    • 1990
  • Based on the formulation which incorporates large deformation and anisotropy, an elastic-plastic finite element code is developed with membrane element to include the contact treatment. For the analysis of the general sheet metal forming process with contact condition, the treatment of contact is considered by employing the successive skew coordinate system. Three kinds of sheet metal forming processes with contact conditions are analyzed; stretching of a square diaphragm with a hemispherical punch, deep drawing of a circular cup and deep drawing of a square cup. Then the computational results are compared with the experiment. The computed loads and the distribution of the thickness strain are in good agreement with the experiment for all cases. However, the computational results of the thickness strain show the effect of bending can not be ignored in the deep drawing process whereas the effect of bending is negligible in stretching.

Delamination Limit of Aluminum Foil-Laminated Sheet During Stretch Forming (등이축인장 모드 변형시 알루미늄 포일 접착강판의 박리한계 예측)

  • Lee, Chan-Joo;Son, Young-Ki;Lee, Jung-Min;Lee, Seon-Bong;Byun, Sang-Deog;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.413-420
    • /
    • 2012
  • An aluminum foil-laminated sheet is a laminated steel sheet on which aluminum foil is adhesively bonded. It is usually used on the outer panel of home appliances to provide an aluminum feeling and appearance on the surface of the product. The delamination of aluminum foil is one of the main problems during the stretch forming process. The purpose of this study is was to determine the delamination limit of an aluminum foil-laminated sheet in the stretch forming process. The delamination was dependent on the bonding strength between aluminum foil and steel sheet. The fracture behavior of the interface between the aluminum foil and the steel sheet was described by a cohesive zone model. A finite element was conducted with the cohesive zone model to analyze the relationship between the delamination limit and the bonding strength of the interface. The interface bonding strength was evaluated by lap shear and T-peel test. The delamination limit of the aluminum foil-laminated sheet was determined by using the bonding strength of the steel sheet. The delamination limit was also verified by the Erichsen test.

Elastic-Plastic Finite Element Analysis of 2-D Stretch Forming by Using the Selective M/S-Elements (선택적 M/S요소를 이용한 2차원 스트레칭 공정의 탄소성 유한요소해석)

  • 양동열;정상보;송인섭;심현보;이항수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1601-1610
    • /
    • 1991
  • 본 연구에서는 3차원 스트레칭 문제의 2차원화가 가능한 주요 단면에 대해서 박막요소와 적층 셸(degenerated shell) 요소를 혼합하여 사용하는 선택적 M/S 방법을 이용하여 2차원 문제로 해석하였다. M/S변환 조건으로는 변형형상의 기하학적 조건 을 고려하였다.

Aluminum autobody technology for the '90 (90년대의 Al 차체 기술)

  • 박석완;권순용;조원석
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.3-8
    • /
    • 1993
  • 본 고에서는 차체제작의 첫단계인 프레스 성형시 문제가 되는 알루미늄 합금판재의 성형성에 대하여 기술한다. 차체용 Al합금판의 성형성을 인장시험, 헤밍시험, 스트레치 포오밍 시험 등으로 조사해 보았다. 냉연강판과 비교하여 현재의 차체용 Al합금판은 강도와 연신율 면에서 열세임에 틀림이 없으나, 앞으로 냉여강판에 버금가는 Al합금판이 나오리라 예상한다. 1. 시편의 종류. 2. 결정립 조직. 3. 집합 조직. 4. 상온 인장시험. 5. 고온 인장시험. 6. 헤밍시험(Hemming test). 7. 스트레치 포오밍 시험(Stretch forming test)

  • PDF