• Title/Summary/Keyword: Stress-related gene expression

Search Result 277, Processing Time 0.032 seconds

Profiling Metabolites Expressed Corn Root Under Waterlogging

  • Jae-Han Son;Young-Sam Go;Hwan-Hee Bae;Kyeong-Min Kang;Beom-Young Son;Seonghyu Shin;Tae-Wook Jung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.289-289
    • /
    • 2022
  • Waterlogging tolerance of corn is one of the important factor for cultivate in paddy soil condition to increase cultivation area and self-sufficiency of corn in Korea. In order to develop elite waterlogging tolerance corn, the new corn lines bred by crossing wild corn, Teosinte, and cultivated corn inbred lines. Five accessions among the 2 species, Zea mays sub spp. mexicana and Zea mays spp. parviglumis, of 81 Teosinte were selected through the waterlogging treatment. The waterlogging treatments were implemented for 7 days at the seedling(V3) stage. The inbred lines were developed by crossing 5 teosinte accessions and cultivated corn lines and they were estimated waterlogging tolerance. It was screened and analyzed the metabolites extracted from roots of 19KT-32(KS141 × teosinte) that was treated waterlogging. We selected 8 of 180 metabolites like as γ-aminobutyric acid(GABA), putrescine, citrulline, Gly, and Ala that expression was remarkably changed over 2.5-times, 7 metabolites increased and 1 metabolite decreased in waterlogging, respectively. Glutamate decarboxylase(GAD) catalyzing GABA accumulation gene have 10 haplotypes, and exon1 was highly conserved, but identified to 135 SNPs after the first intron. Among the 135 SNPs, the number of transversion mutations (52) surpassed the number of transition mutations (38). Most of metabolites were related to abiotic stress in plant that it regulated to pH, osmotic pressure K+/Ca++ and ATPase activity. We are analyzing the association using these results for increase breeding efficiency.

  • PDF

Effects of High Stocking Density on the Expressions of Stress and Lipid Metabolism Associated Genes in the Liver of Chicken (닭의 고밀도 사양체계가 스트레스 및 지방대사 연관 유전자 발현에 미치는 영향)

  • An, Young Sook;Park, Jeong Geun;Jang, In Surk;Sohn, Sea Hwan;Moon, Yang Soo
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1672-1679
    • /
    • 2012
  • The effect of high stocking density (HSD) on the expression of stress and lipid metabolism associated genes in the liver of broiler chickens was examined by chicken genome array analysis. The chickens in a control group were randomly assigned to a $495cm^2/bird$ stocking density, whereas the chickens in a HSD group were arranged in a $245cm^2/bird$ stocking density with feeding ad libitum for 35 days. The chickens assigned to the HSD group had a significantly lower body weight, weight gain, and feed intake compared with those of the control group (p<0.05). The mortality of chickens was higher in the HSD group than in the control group. The microarray analysis indicated up-regulation of stress associated genes such as HMGCR, $HSP90{\alpha}$, HSPA5 (GRP78/Bip), DNAJC3 and ATF4, and down-regulation of interferon-${\gamma}$ and PDCD4 genes. The endoplasmic reticulum stress associated genes, HSPA5 (GRP78/Bip), DNAJC3 and ATF4, were highly expressed in the HSD group. The genes, ACSL5, TMEM195 and ELOVL6, involved in fatty acid synthesis, were elevated in the HSD group. The genes, ACAA1, ACOX1, EHHADH, LOC423347 and CPT1A, related to fatty acid oxidation, were also activated in the HSD group. These results suggest that a HSD rearing system stimulates the genes associated with fatty acid synthesis as well as fatty acid oxidation in the liver of broiler chickens.

THE EFFECT OF ALTERED FUNCTIONAL FORCE ON THE EXPRESSION OF SPECIFIC MRNAS IN THE DEVELOPING MOUSE MANDIBLE (하악골의 발육중인 생쥐에서 기능력의 변화가 특이-유전자 발현에 미치는 영향)

  • Kim, Hyung-Tae;Park, Joo-Cheol;Lee, Chang-Seop;Park, Heon-Dong
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.2
    • /
    • pp.308-319
    • /
    • 2003
  • Mechanical forces are known to have an effect on bone formation, maintenance and remodeling, and there is evidence that the development of the mandibular condyle in the rat or mouse is influenced by altered functional force. However, studies are lacking in molecular-biologic mechanism such as the identification of differentiation factor induced from functional force. Here a mouse model was used to investigate the functional stress-responsive gene or factors which is related to the altered force by comparing the expression genes of functional state and hypo-functional state of the mouse mandible. ICR mice were provisioned with either a soft, mushy diet (soft-diet group) or hard rat pellets (hard-diet group) beginning at weaning for the alteration of functional force and subsequently sacrificed at 89 days of age. Incisor of mice in group 1 were trimmed twice a week to reduce occlusal forces. After killing the animals, mandibular bone including condyle were collected for RNA extraction, subtractive hybridization, northern blot analysis and mRNA in-situ hybridization. The results as follows; 1. A total of 39 clones were sequenced, and 11 individual sequence types were subsequently identified by subtractive hybridization, as 28 clones were represented twice in the analyzed sets. 2. Consequently four candidate clones, FS-s (functional stress-specific)2, -5, -18, and -22 were identified and characterized by homolgy search and northern analysis. Four of these clones, FS-s2, -5, -18, and -22, were shown to be expressed differentially in the hard-diet group. 3. Histologic sections showed that osteoblastic activity along the bone trabeculae and active bone remodeling were significantly lower in soft than in hard diet animals. A soft diet seems to enable a longer period of endochondral ossification in the mandibular condyle. 4. Although the mRNAs of FS-s2, -5, -18, and -22 were expressed rarely by cells of the soft-diet group, highest expression was detected in the cells of the hard-diet group. Together with the above results, it is suggested that FS-s2, -5, -18, and -22 could act as an important factors controlling the tissue changes in response to functional stress. The exact functional significance of these findings remains to be established.

  • PDF

Transduction of Familial Amyotrophic Lateral Sclerosis-related Mutant PEP-1-SOD Proteins into Neuronal Cells

  • An, Jae Jin;Lee, Yeom Pyo;Kim, So Young;Lee, Sun Hwa;Kim, Dae Won;Lee, Min Jung;Jeong, Min Seop;Jang, Sang Ho;Kang, Jung Hoon;Kwon, Hyeok Yil;Kang, Tae-Cheon;Won, Moo Ho;Cho, Sung-Woo;Kwon, Oh-Shin;Lee, Kil Soo;Park, Jinseu;Eum, Won Sik;Choi, Soo Young
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.55-63
    • /
    • 2008
  • Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the selective death of motor neurons. Mutations in the SOD1 gene are responsible for a familial form of ALS (FALS). Although many studies suggest that mutant SOD1 proteins are cytotoxic, the mechanism is not fully understood. To investigate the role of mutant SOD1 in FALS, human SOD1 genes were fused with a PEP-1 peptide in a bacterial expression vector to produce in-frame PEP-1-SOD fusion proteins (wild type and mutants). The expressed and purified PEP-1-SOD fusion proteins were efficiently transduced into neuronal cells. Neurones harboring the A4V, G93A, G85R, and D90A mutants of PEP-1-SOD were more vulnerable to oxidative stress induced by paraquat than those harboring wild-type proteins. Moreover, neurones harboring the mutant SOD proteins had lower heat shock protein (Hsp) expression levels than those harboring wild-type SOD. The effects of the transduced SOD1 fusion proteins may provide an explanation for the association of SOD1 with FALS, and Hsps could be candidate agents for the treatment of ALS.

Enhanced fungal resistance in Arabidopsis expressing wild rice PR-3 (OgChitIVa) encoding chitinase class IV

  • Pak, Jung-Hun;Chung, Eun-Sook;Shin, Sang-Hyun;Jeon, Eun-Hee;Kim, Mi-Jin;Lee, Hye-Young;Jeung, Ji-Ung;Hyung, Nam-In;Lee, Jai-Heon;Chung, Young-Soo
    • Plant Biotechnology Reports
    • /
    • v.3 no.2
    • /
    • pp.147-155
    • /
    • 2009
  • Oryza grandiglumis Chitinase IVa (OgChitIVa) cDNA encoding a class IV chitinase was cloned from wild rice (Oryza grandiglumis). OgChitIVa cDNA contains an open reading frame of 867 nucleotides encoding 288 amino acid residues with a predicted molecular weight of 30.4 kDa and isoelectric point of 8.48. Deduced amino acid sequences of OgChitIVa include the signal peptide and chitin-binding domain in the N-terminal domain and conserved catalytic domain. OgChitIVa showed significant similarity at the amino acid level with related monocotyledonous rice and maize chitinase, but low similarity with dicotyledoneous chitinase. Southern blot analysis showed that OgChitIVa genes are present as two copies in the wild rice genome. It was shown that RNA expression of OgChitIVa was induced by defense/stress signaling chemicals, such as jasmonic acid, salicylic acid, and ethephon or cantharidin and endothall or wounding, and yeast extract. It was demonstrated that overexpression of OgChitIVa in Arabidopsis resulted in mild resistance against the fungal pathogen, Botrytis cinerea, by lowering disease rate and necrosis size. RT-PCR analysis showed that PR-1 and PR-2 RNA expression was induced in the transgenic lines. Here, we suggest that a novel OgChitIVa gene may play a role in signal transduction process in defense response against B. cinerea in plants.

Rosmarinic Acid Inhibits Ultraviolet B-Mediated Oxidative Damage via the AKT/ERK-NRF2-GSH Pathway In Vitro and In Vivo

  • Mei Jing Piao;Pattage Madushan Dilhara Jayatissa Fernando;Kyoung Ah Kang;Pincha Devage Sameera Madushan Fernando;Herath Mudiyanselage Udari Lakmini Herath;Young Ree Kim;Jin Won Hyun
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.84-93
    • /
    • 2024
  • Rosmarinic acid (RA) is a phenolic ester that protects human keratinocytes against oxidative damage induced by ultraviolet B (UVB) exposure, however, the mechanisms underlying its effects remain unclear. This study aimed to elucidate the cell signaling mechanisms that regulate the antioxidant activity of RA and confirm its cyto-protective role. To explore the signaling mechanisms, we used the human keratinocyte cell line HaCaT and SKH1 hairless mouse skin. RA enhanced glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS) expression in HaCaT cells in a dose- and time-dependent manner. Moreover, RA induced nuclear factor erythroid-2-related factor 2 (NRF2) nuclear translocation and activated the signaling kinases protein kinase B (AKT) and extracellular signal-regulated kinase (ERK). Treatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, the ERK inhibitor U0126, and small interfering RNA (siRNA) gene silencing suppressed RA-enhanced GCLC, GSS, and NRF2 expression, respectively. Cell viability tests showed that RA significantly prevented UVB-induced cell viability decrease, whereas the glutathione (GSH) inhibitors buthionine sulfoximine, LY294002, and U0126 significantly reduced this effect. Moreover, RA protected against DNA damage and protein carbonylation, lipid peroxidation, and apoptosis caused by UVB-induced oxidative stress in a concentration-dependent manner in SKH1 hairless mouse skin tissues. These results suggest that RA protects against UVB-induced oxidative damage by activating AKT and ERK signaling to regulate NRF2 signaling and enhance GSH biosynthesis. Thus, RA treatment may be a promising approach to protect the skin from UVB-induced oxidative damage.

Comparison of Gene Expression in Larval Fat Body of Helicoverpa assulta in Different Temperature Conditions (온도변화에 따른 담배나방 유충 지방체의 유전자 발현 비교 분석)

  • Cha, Wook Hyun;Kim, Kwang Ho;Lee, Dae-Weon
    • Korean journal of applied entomology
    • /
    • v.57 no.3
    • /
    • pp.165-175
    • /
    • 2018
  • Insects are known to live at wide range of temperature, but can not survive when they are exposed to over $40^{\circ}C$ or below supercooling point. The larvae of Helicoverpa assulta have been reared at high ($35^{\circ}C$), low (3 to $10^{\circ}C$), and room temperature ($25^{\circ}C$; control). To identify stress-related genes, the transcriptomes of fat body have been analyzed. Genes such as cuticular proteins, fatty acyl ${\Delta}9$ desaturase and glycerol 3 phosphate dehydrogenase were up-regulated whereas chitin synthase, catalase, and UDP-glycosyltransferase were down-regulated at low temperature. Superoxide dismutase, metallothionein 2, phosphoenolpyruvate carboxykinase and trehalose transporter have been up-regulated at high temperature. In addition, expressions of heat shock protein and glutathione peroxidase were increased at high temperature, but decreased at low temperature. These temperature-specific expressed genes can be available as markers for climate change of insect pests.