• Title/Summary/Keyword: Stress-life Curve

Search Result 207, Processing Time 0.027 seconds

Assessment of casting parts fatigue life for 3MW offshore wind turbine (3MW 해상풍력발전기 주물품의 내구수명 평가)

  • Roh, Gitae;Kang, Wonhyoung;Lee, Seongchan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.189.2-189.2
    • /
    • 2010
  • The purpose of this study is fatigue damage assessment for large sized casting parts (hub and mainframe) of the 3MW offshore wind turbine by computer simulation. Hub and mainframe durability assessment is necessary because wind turbine have to guarantee for 20 years. Fatigue life evaluation must be considered all of fatigue load conditions as the components are wind load transmission path. Palmgren-Miner linear damage accumulation hypothesis is applied for fatigue life estimation with stress-life approach. S-N curve for the spheroid graphite cast iron EN-GJS-400-18-LT is derived according to durability guidelines. Reduction factors were applied for survival probability, surface roughness, material quality and partial safety factor according to Germanischer Lloyd rules. To calculate fatigue damage, stress tensors, extracted from the unity load calculation from ANSYS is multiplied with time track of fatigue loads extracted from GH bladed. Damage accumulation is performed with all of fatigue load conditions at each finite element nodes. In this study maximum nodal damage value is under 1.0. casted parts are safe. This research was financially supported by the Ministry of Knowledge Economy(MKE), Korea Institute for Advancement of Technology(KIAT) and Honam Leading Industry Office through the Leading Industry Development for Economic Region.

  • PDF

A Fatigue Life Prediction by Growth Characteristics of a Small Surface Crack (작은 표면균열의 성장특성에 의한 수명예측)

  • Suh, Chang-Min;Lim, Chang-Soon;Gang, Yong-Gu
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.617-617
    • /
    • 1989
  • This paper deals with a fatigue life prediction of a surface crack based on the experimentally obtained relationship between surface crack length ratio $a/a_{f}$ and cycle ratio $N/N_{f}$ using micro computer. Firstly $a/a_{f}$-$N/N_{f}$ curves obtained from experimental tests, were assumed as three curves UC(the upper limit curve), LC(the lower limit curve) and MC(the middle curve), and these were utilized to predict the fatigue life. Comparing the calculated values which represent the characteristics of crack growth behaviors from the three assumed curves with the experimental ones, it has been found that in the stable crack growth region, they coincide reasonably well each other. And the differences between the fatigue lives obtained from the assumed curves and the experimental fatigue life did not exceed 20%. Using the characteristics of $a/a_{f}$-$N/N_{f}$ curves, it is possible to predict the da/dN-Kmax curves and the S-$N_{f}$ curves.

A Fatigue Life Prediction by Growth Characteristics of a Small Surface Crack (작은 표면균열의 성장특성에 의한 수명예측)

  • Suh, Chang-Min;Lim, Chang-Soon;Gang, Yong-Gu
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.108-117
    • /
    • 1989
  • This paper deals with a fatigue life prediction of a surface crack based on the experimentally obtained relationship between surface crack length ratio $a/a_{f}$ and cycle ratio $N/N_{f}$ using micro computer. Firstly $a/a_{f}$-$N/N_{f}$ curves obtained from experimental tests, were assumed as three curves UC(the upper limit curve), LC(the lower limit curve) and MC(the middle curve), and these were utilized to predict the fatigue life. Comparing the calculated values which represent the characteristics of crack growth behaviors from the three assumed curves with the experimental ones, it has been found that in the stable crack growth region, they coincide reasonably well each other. And the differences between the fatigue lives obtained from the assumed curves and the experimental fatigue life did not exceed 20%. Using the characteristics of $a/a_{f}$-$N/N_{f}$ curves, it is possible to predict the da/dN-Kmax curves and the S-$N_{f}$ curves.

  • PDF

Studies on Self-Selection of 3 macronutrients and the Effect of Electric Stress on Food Selection in Male Rats (3대 열량소를 스스로 선택하게 했을 때 흰쥐의 식이 선택성향 및 저전류 Stress가 이에 미치는 영향)

  • 장영애
    • Journal of Nutrition and Health
    • /
    • v.23 no.7
    • /
    • pp.504-512
    • /
    • 1990
  • In experiment 1, dietary self-selection of the 3 macronutrients, protein, fat, and carbohydrate were examined in male rats given 3 food cups of 80% carbohydrate, 80% protein, and 70% fat diets simultaneously. All the rats showed normal growth pattern and organ weight, which means they have ability to select just right kinds and amounts of nurients in order to support their growth and development. Mean values of caloric intake, body weight gain, serum lipid values and empty carcass compositions were not significantly differ between the upper and lower quartile groups of fat proportion of empty carcass compared to the lower quartile group(LF). Same feeding design was employed in experiment 2 where the effect of mild electric stress on food selection was studied. The rats in both control and electric stress group revealed a normal growth curve and organ weights. The rats in both control and electric stress group revealed a normal growth curve and organ weights. The stress group showed higher caloric intake and body weight gain than control group, but no significant effects of stress on serum and empty carcass components was found. Even though normal rats seemed to select macronutrients according to their physiolosical needs, there were individual differences in food selection whether they were exposed to stress or not. Therefore life long individual food selection pattern may have a great influence on nutritional status and chronic degenerative diseases of eldery, and on aging process.

  • PDF

Fatigue Analysis of Welding Bogie Frames for Rolling Stocks Using The equilibrium-equivalent structural stress method (등가구조응력법을 이용한 철도차량 용접대차프레임의 피로해석)

  • Kim, Chul-Su;Ahn, Seung-Ho;Chung, Kwang-Woo;Cheon, Young-Suk;Park, Choon-Soo;Kim, Sang-Su;Jang, Cheon-Su
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1243-1248
    • /
    • 2010
  • Fatigue design and evaluation of welded joints are typically carried out by weld classification approach in which a family (theoretically infinite) of parallel nominal stress based S-N curves are used according to joint types and loading modes as well as extrapolation-based hot spot stress. Traditional finite element methods are not capable of consistently capturing the stress concentration effects on fatigue behavior due to their mesh-sensitivity in stress determination at welds resulted from notch stress singularity. The extrapolated hot spot stresses tend vary, depending on the element sizes, types, joint types, and loading mode. however, the equilibrium-equivalent structural stress method(E2S2) has been recently developed through several joint industry projects as a robust method to analyze welded components using finite element analysis. This method has been proven effective in correlating a large amount of published fatigue test results in the literature such as master S-N curve and has used for evaluating the fatigue life of welding components. In this study, fatigue analysis of the welding bogie frame is examined using E2S2 method with master S-N curve.

  • PDF

Construction of a Design Curve for Fatigue Model Using Bootstrap Method (붓스트랩방법을 이용한 피로모형의 설계곡선 설정)

  • 서순근;조유희
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.4
    • /
    • pp.106-119
    • /
    • 2002
  • The fatigue curve with estimated parameters represents the estimate of the median or mean life at a given applied stress But, in order to assist a designer in making decisions regarding the fatigue failure mode, it is common practice to construct a design curve on the lower or safe side of data. In this study, to overcome the limitations(i.e., no runout, equal variance, and quality of the approximation, etc) of Shen, Wirsching, and Cashman's method which suggested the approximate design curve for nonlinear models using tolerance interval constructed by Owen's method, an algorithm to find design curves under the fatigue model using a parametric bootstrap method, is proposed and illustrated with multiple fatigue data sets.

High Temperature Properties of Fiber Reinforced Composites under the Different Loading Conditions

  • Weiguang, Hu;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.188-192
    • /
    • 2017
  • The mechanical properties of composites are significantly affected by external environment. It is essential to understand the degradation of material performance and judge the material's lifetime in advance. In the current research, changes in mechanical properties of glass fiber and unsaturated polyester composite materials (GFRP, Glass fiber reinforced plastic) were investigated under different bending stress and submerged in hot water at a temperature of $80^{\circ}C$. Loading time of 100 H (hours), 200 H, 400 H, 600 H, 800 H for testing under stresses equal to 0% (stress-free state), 30%, 50% and 70% of the ultimate strength was applied on the GFRP specimens. From the values of bending stress, obtained from three-point bending test, fracture energy, failure time, and life curve were analysed. Moreover, a normalized strength degradation model for this condition was also developed. It was observed that within 100 H, the decline rate of the bending strength was proportional to the pressure.

Variable amplitude fatigue test of M30 high-strength bolt in bolt-sphere joint grid structures

  • Qiu, Bin;Lei, Honggang;Yang, Xu;Zhou, Zichun;Wang, Guoqing
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.433-444
    • /
    • 2019
  • Fatigue failure of a grid structure using bolt-sphere joints is liable to occur in a high-strength bolt due to the alternating and reciprocal actions of a suspension crane. In this study, variable amplitude fatigue tests were carried out on 20 40 Cr steel alloy M30 high-strength bolts using an MTS fatigue testing machine, and four cyclic stress amplitude loading patterns, Low-High, High-Low, Low-High-Low, and High-Low-High, were tested. The scanning electron microscope images of bolt fatigue failure due to variable amplitude stress were obtained, and the fractographic analysis of fatigue fractures was performed to investigate the fatigue failure mechanisms. Based on the available data from the constant amplitude fatigue tests, the variable amplitude fatigue life of an M30 high-strength bolt in a bolt-sphere joint was estimated using both Miner's rule and the Corten-Dolan model. Since both cumulative damage models gave similar predictions, Miner's rule is suggested for estimating the variable-amplitude fatigue life of M30 high-strength bolts in a grid structure with bolt-sphere joints; the S-N fatigue curve of the M30 high-strength bolts under variable amplitude loading was derived using equivalent stress amplitude as a design parameter.

Modified S-N Curve Method to Estimate Fatigue life of Welded Joints (수정 S-N곡선법을 이용한 용접연결부의 피로수명 추정)

  • Yang, Park-Dal-Chi;Kim, Mi-Kyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.26-32
    • /
    • 2012
  • In this paper, the effects of irregular bead shapes on fatigue life were investigated. A modified S-N curve method was used to estimate the fatigue life, which considered the inherent multiaxiality caused by the geometrical feature produced by the welding process. The point method of the critical distance method was used to determine the fatigue effective stress. Three types of fillet joint models were tested in the fatigue experiments. For each model, real bead shapes were collected using a 3D laser scanner, and finite element analyses were performed. The results of the analyses with actual bead shapes were compared with those using an idealized bead shape model. The results of the present analytical methods showed good agreement with the experimental results.

The Estimation of Fatigue Strength of Structure with Practical Dynamic Force by Inverse Problem and Lethargy Coefficient (구조물의 피로강도평가를 위한 역문제 및 무기력계수에 의한 실동하중해석)

  • 양성모;송준혁;강희용;노홍길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.106-113
    • /
    • 2004
  • Most of mechanical structures are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. In this study, the dynamic response of vehicle structure to external forces is classified an inverse problem involving strains from the experiment and the analysis. The practical dynamic forces are determined by the combination of the analytical and experimental method with analyzed strain by quasi-static finite element analysis under unit force and with measured strain by a strain gage under driving load, respectively. In a stressed body, inter-molecular chemical bonds are failed beyond the certain magnitude. The failure of molecular structure in material is considered as a time process of which rate is determined by mechanical stress. That is, the failure of inter-molecular chemical bonds is the fatigue lift of material. This kinetic concept is expressed as lethargy coefficient. And S-N curve is obtained with the lethargy coefficient from quasi-static tensile test. Equivalent practical dynamic force is obtained from the identification of practical dynamic force for one loading point. Using the practical dynamic force and S-N curve, fatigue life of a window pillar is analyzed with FEM under the identified force by the procedure of above mentioned.