• Title/Summary/Keyword: Stress- ratio

Search Result 4,038, Processing Time 0.032 seconds

Bending behavior of squared cutout nanobeams incorporating surface stress effects

  • Eltaher, Mohamed A;Abdelrahman, Alaa A.
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.143-161
    • /
    • 2020
  • In nanosized structures as the surface area to the bulk volume ratio increases the classical continuum mechanics approaches fails to investigate the mechanical behavior of such structures. In perforated nanobeam structures, more decrease in the bulk volume is obtained due to perforation process thus nonclassical continuum approaches should be employed for reliable investigation of the mechanical behavior these structures. This article introduces an analytical methodology to investigate the size dependent, surface energy, and perforation impacts on the nonclassical bending behavior of regularly squared cutout nanobeam structures for the first time. To do this, geometrical model for both bulk and surface characteristics is developed for regularly squared perforated nanobeams. Based on the proposed geometrical model, the nonclassical Gurtin-Murdoch surface elasticity model is adopted and modified to incorporate the surface energy effects in perforated nanobeams. To investigate the effect of shear deformation associated with cutout process, both Euler-Bernoulli and Timoshenko beams theories are developed. Mathematical model for perforated nanobeam structure including surface energy effects are derived in comprehensive procedure and nonclassical boundary conditions are presented. Closed forms for the nonclassical bending and rotational displacements are derived for both theories considering all classical and nonclassical kinematics and kinetics boundary conditions. Additionally, both uniformly distributed and concentrated loads are considered. The developed methodology is verified and compared with the available results and an excellent agreement is noticed. Both classical and nonclassical bending profiles for both thin and thick perforated nanobeams are investigated. Numerical results are obtained to illustrate effects of beam filling ratio, the number of hole rows through the cross section, surface material characteristics, beam slenderness ratio as well as the boundary and loading conditions on the non-classical bending behavior of perforated nanobeams in the presence of surface effects. It is found that, the surface residual stress has more significant effect on the bending deflection compared with the corresponding effect of the surface elasticity, Es. The obtained results are supportive for the design, analysis and manufacturing of perforated nanobeams.

Mechanical Properties of Hwangtoh-Based Alkali-Activated Concrete

  • Yang, Keun-Hyeok;Hwang, Hey-Zoo;Lee, Seol
    • Architectural research
    • /
    • v.11 no.1
    • /
    • pp.25-33
    • /
    • 2009
  • This study presents the testing of 15 hwangtoh-based cementless concrete mixes to explore the significance and limitations of the development of eco-friendly concrete without carbon dioxide emissions while maintaining various beneficial effects. Hwangtoh, which is a kind of kaolin, was incorporated with inorganic materials, such as calcium hydroxide, to produce a cement-less binder. The main variables investigated were the water-to-binder ratio and fine aggregate-to-total aggregate ratio to ascertain the reliable mixing design of hwangtoh-based cementless concrete. The variation of slump with elapsed time was recorded in fresh concrete specimens. Mechanical properties of hardened concrete were also measured: including compressive strength gain, splitting tensile strength, moduli of rupture and elasticity, stress-strain relationship, and bond resistance. In addition, mechanical properties of hwangtoh-based cement-less concrete were compared with those of ordinary portland cement (OPC) concrete and predictions obtained from the design equations specified in ACI 318-05 and CEB-FIP for OPC concrete, wherever possible. Test results show that the mechanical properties of hwangtoh-based concrete were significantly influenced by the water-to-binder ratio and to less extend by fine aggregate-to-total aggregate ratio. The moduli of rupture and elasticity of hwangtoh-based concrete were generally lower than those of OPC concrete. In addition, the stress-strain and bond stress-slip relationships measured from hwangtoh-based concrete showed little agreement with the design model specified in CEB-FIP. However, the measured moduli of rupture and elasticity, and bond strength were higher than those given in ACI 318-05 and CEB-FIP. Overall, the test results suggest that the hwangtoh-based concrete shows highly effective performance and great potential as an environmental-friendly building material.

An Experimental Study on the Characteristics of Vibro-compaction of Crushed Stones (쇄석의 진동다짐 특성에 관한 실험적 고찰)

  • Jeong, Gil-Soo;Park, Byung-Soo;Hong, Young-Kil;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.89-94
    • /
    • 2004
  • This Study is results of experimental works to investigate the characteristics of vibro-compaction of crushed stones having coarse grain sizes. For testing material, crushed stone, sieved within very narrow ranges of grain size distribution, was used. Cyclic loading apparatus was used to apply cyclic loading to the specimen prepared in the mold. Tests were performed by changing the ratio of the maximum to the minimum stress, frequency and the magnitude of the maximum and the minimum stresses. Settlement of specimen due to cyclic loading was measured to analyze the compaction efficiency and sieve analysis test after cyclic loading test was also carried out to find the crushing rate of the specimen. As results of cyclic loading test, normalized settlement in terms of specimen height tends to be converged around loading cycle number of 1500. The magnitude of normalized settlement is in the range of 3.11 ~ 8.57%. The crushing rate is in the range of 4.46 ~ 8.78%. Normalize settlement and the crushing rate tend to increase with decreasing the ratio of the maximum to the minimum stresses and they tend to increase with increasing the frequency and the magnitude of the maximum and the minimum stresses for the given ratio. In conclusions, compaction rate of crushed stone is controlled by the dynamic stress (difference between the maximum and the minimum stresses) and the crushing rate is dominated by applied energy to the specimen.

  • PDF

Stress Sharing Behaviors and its Mechanism During Consolidation Process of Composition Ground Improved by Sand Compaction Piles with Low Replacement Area Ratio (저치환율 SCP에 의한 복합지반의 압밀 과정중에 발생하는 응력분담거동과 그 메커니즘)

  • 유승경
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.301-310
    • /
    • 2003
  • In order to design accurately sand compaction pile (SCP) method with low replacement area ratio, it is important to understand the mechanical interaction between sand piles and clays and its mechanism during consolidation process of the composition ground. In this paper, a series of numerical analyses on composition ground improved by SCP with low replacement area ratio were carried out, in order to investigate the mechanical interaction between sand piles and clays. The applicability of numerical analyses, in which an elasto-viscoplastic consolidation finite element method was applied, could be confirmed comparing with results of a series of model tests on consolidation behaviors of composition ground improved by SCP. And, through the results of the numerical analyses, each mechanical behavior of sand piles and clays in the composition ground during consolidation was elucidated, together with stress sharing mechanism between sand piles and clays.

Characteristics of Undrained Static Shear Behavior for Sand Due to Aging Effect (Aging 효과에 따른 모래의 비배수 정적전단거동 특성)

  • 김영수;김대만
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.137-150
    • /
    • 2004
  • Aging effect of sands showed insignificant result in comparison with that of clay, so that it has not been studied so far. But, as penetration resistance increase has been observed with the lapse of time after deposition and disturbance, aging effect of sands has been actively investigated by field tests, and recently many researchers are performing not oかy field tests but also laboratory tests on sands, so aging effects of sands have been also examined by laboratory tests. In this study, to observe the aging effect of undrained static shear behavior for Nak-Dong River sand, undrained static triaxial tests were performed with changing relative density$(D_r)$, consolidation stress ratio$(K_c)$, and consolidation time. These tests showed that modulus within elastic section increased as consolidation time increased, and in addition, phase transformation point strength$(S_{PT})$ and critical stress ratio point strength $(S_{CSR})$ also increased. But pore water pressure ratio$(u/{p_c}')$ decreased as consolidation time increased, so with this various result, aging effect of static shear for sands can be observed as well.

Analysis and Modelling of Vibration Performance for Multi-layered Corrugated Structure

  • Kim, Jin Nyul;Sim, Jae Min;Park, Min Jung;Kim, Ghi Seok;Kim, Jongsoon;Park, Jong Min
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.327-334
    • /
    • 2013
  • Purpose: The purpose of this study was to analyze for resonant frequency, vibration transmissibility and damping ratio of multi-layered corrugated structures using a random vibration test. Methods: The random vibration test was performed by the ASTM D4728 specifications using two paperboards (S120, K180) and two types of flutes (A/F, B/F). Damping ratio of the multi-layered corrugated structures was estimated using a theoretical equation derived from the measured resonant frequency and transmissibility. Results: The resonant frequency and vibration transmissibility of the multi-layered corrugated structures of K180 and B-flute were higher than those of S120 and A-flute, respectively; however, the damping ratio of each sample had the opposite tendency. The resonant frequency was inversely proportional to the sample thickness and static stress; vibration transmissibility and damping ratio were not correlated with sample thickness and static stress. In addition, we developed a mathematical model of the resonant frequency with variables of sample thickness and static stress. Conclusions: Results of this study can be useful for environment-friendly and optimal packaging design since vibration has been a key factor in cushioning packaging design.

A STUDY ON THE PATTERN OF MOVEMENT DURING RETRACTION OF MAXILLARY CENTRAL INCISOR BY FINITE ELEMENT METHOD (상악 중절치 후방 이동시의 이동양상에 관한 유한요소법적 연구)

  • Jang, Jae Wan;Sohn, Byung Wha
    • The korean journal of orthodontics
    • /
    • v.21 no.3
    • /
    • pp.617-634
    • /
    • 1991
  • The retraction of anterior teeth is one of the fundamental methods in orthodontic treatment and a proper position and angulation of anterior teeth after the retraction are very important for esthetics, stability, and function of teeth. In this research we analyzed, by Finite Element Method, the stress distribution on the periodontal ligament according to the variation of force and moment applied on the crown and predict the pattern of movement of maxillary central incisor. At the same time, the amount of force and moment caused by activation of the loop which was used for retraction of maxillary central incisor was analyzed by Finite Element Method. We observed the following results: 1) We could control the stress distribution on the periodontal ligament by proper moment/force ratio on maxillary right central incisor and predict the pattern of movement of maxillary right central incisor. 2) The amount of stress on the periodontal ligament as well as the moment/force ratio demanded by each pattern of movement increased as the destruction of alveolar bone was worse. 3) The moment/force ratio demanded by each pattern of movement decreased as the angle between the maxillary central incisor and occlusal plane decreased. 4) The force with the open loop was shown to be large compared to that with the closed loop. Also, the force with the helix decreased by 30% compared to that without the helix. 5) Under the same conditions we observed a larger moment/force ratio when the open loop and/or the helix were used.

  • PDF

A Study on the Performance Improvement of High-Pylon Extradosed Bridge adopting Fatigue Loading Condition (국내 설계하중의 피로특성을 적용한 고주탑 엑스트라도즈드교의 성능개선에 관한 연구)

  • Lee, Young Jin;Shin, Seung Kyo;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.137-148
    • /
    • 2010
  • This study proposes the optimal ratio of vertical load-carrying capacity (${\beta}$) by investigating structural performances and economic efficiency in the extradosed bridges. Without design standards for the extradosed bridge, Japanese design standards have been used domestically. For the design live load, DL24 is found to be more adequate than DB24. Using the DL24 load, parameter studies are carried out. The parameters are 'main tower height', 'main girder stiffness', and 'cable arrangement'. As a result, it is found that one side cable-stayed extradosed bridges are more economical than double side cable-stayed extradosed bridges. This study also shows that when the ratio of vertical load-carrying capacity(${\beta}$) is 30~50% in the extradosed bridge with the ratio of tower height to main span length 1/6, the extradosed bridge is most economical because of the cable stress less than the allowable stress.

Stability analysis of roof-filling body system in gob-side entry retained

  • Jinlin Xin;Zizheng Zhang;Weijian Yu;Min Deng
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.27-37
    • /
    • 2024
  • The roof-filling body system stability plays a key role in gob-side entry retained (GER). Taking the GER of the 1103 belt transportation roadway in Heilong Coal Mine as engineering background, stability analysis of roof-filling body system was conducted based on the cusp catastrophe theory. Theoretical results showed that the current design parameters of 1103 belt transportation roadway could ensure the roof-filling body system stable during the resistance-increasing support stage of the filling body and the stable support stage of the filling body. Moreover, a verified global numerical model in FLAC3D was established to analyze the failure characteristics including surrounding rock deformation, stress distribution, and plastic zone. Numerical simulation indicated that the width-height ratio of the filling body had a great influence on the stability of the roof-filling body system. When the width-height ratio was greater than 0.62, with the decrease of the width-height ratio, the peak stress of the filling body gradually decreased; when the width-height ratio was greater than 0.92, as the distance to the roadway increased, the roof stress increased and then decreased. The theoretical analysis and numerical simulation findings in this study provide a new research method to analyze the stability of the roof-filling body system in GER.

Regional Distribution Pattern and Geo-historical Transition of In-situ Stress Fields in the Korean Peninsula (한반도지역의 현지응력장 분포 패턴 및 지질시대별 전이 추이)

  • Synn, Joong-Ho;Park, Chan;Lee, Byung-Joo
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.457-469
    • /
    • 2013
  • We have analyzed the regional in-situ stress pattern using 460 stress measurement data at about 100 test sites in Korea, and suggested correlation equations of stress-depth and stress ratio-depth. We made Korea Stress Map(KSM) as in-situ stress fields of the Korean peninsula, combining with a paleo-stress analysis according to the geological period and a stress estimation from focal mechanism. We confirmed the reliability and applicability of correlation equations derived in this study, comparing with worldwide stress-depth patterns, and also estimated the pattern of in-situ stress fields of north-eastern Asia including Korea, China and Japan, comparing with World Stress Map.