• Title/Summary/Keyword: Stress transfer

Search Result 1,113, Processing Time 0.026 seconds

Thermal Stress Analysis for Life Prediction of Power Plant Turbine Rotor (발전용 터빈 로우터의 수명예측을 위한 열응력 해석)

  • 임종순;허승진;이규봉;유영면
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.276-287
    • /
    • 1990
  • In this paper research result of transient thermal stress analysis of power plant turbine rotors for life prediction under severs operating conditions is presented. Galerkin's recurrence scheme is used for numerical solution of discretized FEM equation of transient heat conduction equation. Boundary conditions for the equation and operating conditions are intensively investigated for accurate life prediction of turbine rotors in operation. A computer program for on-site application is developed and tested. Distribution of thermal stress in turbine rotors during various operating condition is analyzed with the program and it is found that the peak thermal stress appears during cold stage conditions at the first stage of high pressure rotors.

Fatigue Life Analysis on Multi-Stacked Film Under Thermal and Residual Stresses (열응력과 잔류응력하의 다층박막의 피로수명 해석)

  • Park Jun-Hyub
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.526-533
    • /
    • 2005
  • Reliability problem in inkjet printhead, one of MEMS devices, is also very important. To eject an ink drop, the temperature of heater must be high so that ink contacting with surface reaches above $280^{o}C$ on the instant. Its heater is embedded in the thin multi-layer in which several materials are deposited. MEMS processes are the main sources of residual stresses development. Residual stress is one of the factors reducing the reliability of MEMS devices. We measured residual stresses of single layers that consist of multilayer. FE analysis is performed using design of experiment(DOE). Transient analysis for heat transfer is performed to get a temperature distribution. And then static analysis is performed with the temperature distribution obtained by heat transfer analysis and the measured residual stresses to get a stress distribution in the structure. Although the residual stress is bigger than thermal stress, thermal stress is more influential on fatigue life.

Effect of Thermophysical Properties on Stress Transfer Function ofr Thermal Fatigue Analysis (열피로 해석시 응력전달함수에 미치는 열적 재료 성질의 영향)

  • Kim, Yeong-Jin;Seok, Chang-Seong;Park, Jong-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.172-179
    • /
    • 1996
  • For mechanical systems operating at high tempertature, thermal fatigue phenomenon has been recognized as a major cause of mechanical component failures. To evaluate cumulative fatigue damage as a conesquence of thermal fatugue on real time, the stress tranfer function(Green's function) approach is popularly used. The objective of this paper is to investigate the effect of thermophsical properties on the stress tranfer function. For this purpose a modified Green's function approach considering temperature-dependent thermophysical properties is proposed. Two case studies were performed and the proposed approach agrees well with full finite element analysis.

Residual Stress Analysis of Rot Rolled Strip in Coiling Process (권취 공정 중 열연 강판의 잔류 응력 해석)

  • 구진모;김홍준;이재곤;황상무
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.302-307
    • /
    • 2003
  • Hot rolled strip is cooled by air and water in Run-Out-Table. In this process, phase transformation and shape deformation occurs due to temperature drop. Because of un-ideal cooling condition of ROT, irregular shape deformation and phase transformation arise in the strip. which affect the strip property and lead to the residual stress of strip. And these exert effects on the following processes, coiling process, coil cooling process, and re-coiling process. Through these processes, the residual stress becomes higher and severe. For the prediction of residual stress distribution and shape deformation of final product, Finite element(FE) based model was used. It consists of non-steady state heat transfer analysis, elasto-plastic analysis. thermodynamic analysis and phase transformation kinetics. Successive FEM simulation were applied from ROT process to coil cooling process. In each process simulation, previous process simulation results were used for the next process simulation. The simulation results were matched well with the experimental results.

Design and Structural Safety Evaluation of Transfer Cask for Dry Storage System of PWR Spent Nuclear Fuel

  • Taehyung Na;Youngoh Lee;Taehyeon Kim;Yongdeog Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.503-516
    • /
    • 2023
  • A transfer cask serves as the container for transporting and handling canisters loaded with spent nuclear fuels from light water reactors. This study focuses on a cylindrical transfer cask, standing at 5,300 mm with an external diameter of 2,170 mm, featuring impact limiters on the top and bottom sides. The base of the cask body has an openable/closable lid for loading canisters with storage modules. The transfer cask houses a canister containing spent nuclear fuels from lightweight reactors, serving as the confinement boundary while the cask itself lacks the confinement structure. The objective of this study was to conduct a structural analysis evaluation of the transfer cask, currently under development in Korea, ensuring its safety. This evaluation encompasses analyses of loads under normal, off-normal, and accident conditions, adhering to NUREG-2215. Structural integrity was assessed by comparing combined results for each load against stress limits. The results confirm that the transfer cask meets stress limits across normal, off-normal, and accident conditions, establishing its structural safety.

Analysis of Endoplasmic Reticulum (ER) Stress Induced during Somatic Cell Nuclear Transfer (SCNT) Process in Porcine SCNT Embryos

  • Lee, Hwa-Yeon;Bae, Hyo-Kyung;Jung, Bae-Dong;Lee, Seunghyung;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Development and Reproduction
    • /
    • v.22 no.1
    • /
    • pp.73-83
    • /
    • 2018
  • This study investigates the endoplasmic reticulum (ER) stress and subsequent apoptosis in duced during somatic cell nuclear transfer (SCNT) process of porcine SCNT embryos. Porcine SCNT and in vitro fertilization (IVF) embryos were sampled at 3 h and 20 h after SCNT or IVF and at the blastocyst stage for mRNA extraction. The x-box binding protein 1 (Xbp1) mRNA and the expressions of ER stress-associated genes were confirmed by RT-PCR or RT-qPCR. Apoptotic gene expression was analyzed by RT-PCR. Before commencing SCNT, somatic cells treated with tunicamycin (TM), an ER stress inducer, confirmed the splicing of Xbp1 mRNA and increased expressions of ER stress-associated genes. In all the embryonic stages, the SCNT embryos, when compared with the IVF embryos, showed slightly increased expression of spliced Xbp1 (Xbp1s) mRNA and significantly increased expression of ER stress-associated genes (p<0.05). In all stages, apoptotic gene expression was slightly higher in the SCNT embryos, but not significantly different from that of the IVF embryos except for the Bax/Bcl2L1 ratio in the 1-cell stage (p<0.05). The result of this study indicates that excessive ER stress can be induced by the SCNT process, which induce apoptosis of SCNT embryos.

Concept Analysis of Relocation Stress - Focusing on Patients Transferred from Intensive Care Unit to General Ward - (전실 스트레스[relocation stress]의 개념분석 - 중환자실에서 일반 병실로 전실하는 환자를 중심으로 -)

  • Son, Youn-Jung;Hong, Sung-Kyung;Jun, Eun-Young
    • Journal of Korean Academy of Nursing
    • /
    • v.38 no.3
    • /
    • pp.353-362
    • /
    • 2008
  • Purpose: This study was conducted to analyze and clarify the meaning of the concept for relocation stress -focusing on patients transferred from an intensive care unit to a general ward. Methods: This study used Walker and Avant's process of concept analysis. Results: Relocation stress can be defined by these attributes as follows: 1) involuntary decision about relocation, 2) moving from a familiar and safe environment to an unfamiliar one, 3) broken relationship of safety and familiarity, 4) physiological and psychosocial change after relocation. The antecedents of relocation stress consisted of these facts: 1) preparation degrees of transfer from the intensive care unit to a general ward, 2) pertinence of the information related to the transfer process, 3) change of major caregivers, 4) change in numbers of monitoring devices, 5) change in the level of self-care. There are consequences occurring as a result of relocation stress: 1) decrease in patients' quality of life, 2) decrease in coping capacity, 3) loss of control. Conclusion: Relocation stress is a core concept in intensive nursing care. Using this concept will contribute to continuity of intensive nursing care.

Mass Transfer of Aerosol onto Spherical Collector at Low Knudsen Number (저 누드센 영역에서 구형 포집체상의 에어로졸 물질 전달)

  • Jung, Chang-Hoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.5
    • /
    • pp.547-555
    • /
    • 2005
  • In this study, an analytical expression for aerosol mass transfer at spherical collector in the low Knudsen number region was obtained. Happel's zero shear stress cell model was extended in the low Knudsen number region and the result was compared with numerical solution results. The zero vorticity model based on the Kuwabara's cell model was also extended in the low Knudsen number region and compared with Happel's results. The results showed that both analytic and numerical solution agree very well with each other in low Knudsen number region. Happel's zero shear stress model also agrees with Kuwabara's zero vorticity model without significant loss of accuracy. The obtained solution converges to the original solution of Lee et al. (1999) when Knudsen number approaches to zero. Subsequently, this study derived most general type of analytic solution for aerosol mass transfer of spherical collector including the finite Knudsen number region.

Analysis of the thermal behaviors of the cylinder block of a small gasoline engine (소형 가솔린 기관의 실린더 블록에 대한 열적 거동 해석)

  • 김병탁;박진무
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.55-67
    • /
    • 1993
  • In this study, the thermal behavior characteristics of the cylinder block of a small 3-cylinder, 4-stroke gasoline engine were analyzed, using the 3-dimensional finite element method. Before numerical analyses were conducted, the performance test and the heat transfer experiment of the engine were carried out in order to prepare the input data for the computations. Engine cycle simulation was performed to obtain the heat transfer coefficient and the temperature of the gas and the mean heat transfer coefficient of coolant. Temperature fields as a result of steady-state heat transfer were obtained and compared with experimental results measured at specific points of the inner and the outer walls of the cylinder block. The thermal stress and deformation characteristics resulting from the nonuniform temperature distributions of the block were investigated. The effects of the thermal behaviors of the cylinder block on the engine operations and the unfavourable aspects of excessive thermal loading were examined on the basis of the calculated results.

  • PDF

Temperature Distribution and Thermal Stress Analyses of a Large LPLi Engine Piston (LPG 액정분사 방식의 대형 엔진용 피스톤의 온도분포와 열응력 해석)

  • 임문혁;손재율;이부윤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.538-550
    • /
    • 2004
  • The convection heat transfer coefficients on the top surface of a large liquid petroleum liquid injection(LPLi) engine piston with the oil gallery are analyzed by solving an inverse thermal conduction problem. The heat transfer coefficients are numerically found so that the difference between analyzed temperatures from the finite element method and measured temperatures is minimized. Using the resulting heat transfer coefficients as the boundary condition, temperature of a large LPLi engine piston is analyzed. With varying cooling water temperature, temperature, stress, and thermal expansion of the piston are analyzed and evaluated.