• 제목/요약/키워드: Stress softening tester

검색결과 2건 처리시간 0.018초

철도 차량용 방진고무의 온도에 따른 뮬린스 효과 (Temperature-dependent Mullins Effect in Anti-vibration Rubber for Railway Vehicles)

  • 오성훈;이수영;유지혜;김홍석;정성균;신기훈
    • 한국생산제조학회지
    • /
    • 제26권2호
    • /
    • pp.193-198
    • /
    • 2017
  • Rubber materials are widely used for anti-vibration in various industries such as railways, automobile, and aviation. However, various factors hinder the accurate prediction of mechanical properties and lifetime of these materials. Particularly, a stress softening phenomenon Mullins effect greatly affects the accuracy of test results by reducing the initial peak stress. Although the Mullins effect has been studied previously, research on its temperature dependence is lacking. In this study, we performed experiments to estimate the temperature dependence of the Mullins effect. Dumbbell specimens made of natural rubber (NR65) was mounted on a stress softening tester and placed in a heat chamber, where they were tested at temperature of 25, 50, and $80^{\circ}C$. Further, five test sets, each consisting of 10 loading/unloading cycles were sequentially performed at predetermined time intervals. Based on the test results, we assessed the effect of temperature and time interval on stress softening and recovery.

Multiscale modeling of reinforced/prestressed concrete thin-walled structures

  • Laskar, Arghadeep;Zhong, Jianxia;Mo, Y.L.;Hsu, Thomas T.C.
    • Interaction and multiscale mechanics
    • /
    • 제2권1호
    • /
    • pp.69-89
    • /
    • 2009
  • Reinforced and prestressed concrete (RC and PC) thin walls are crucial to the safety and serviceability of structures subjected to shear. The shear strengths of elements in walls depend strongly on the softening of concrete struts in the principal compression direction due to the principal tension in the perpendicular direction. The past three decades have seen a rapid development of knowledge in shear of reinforced concrete structures. Various rational models have been proposed that are based on the smeared-crack concept and can satisfy Navier's three principles of mechanics of materials (i.e., stress equilibrium, strain compatibility and constitutive laws). The Cyclic Softened Membrane Model (CSMM) is one such rational model developed at the University of Houston, which is being efficiently used to predict the behavior of RC/PC structures critical in shear. CSMM for RC has already been implemented into finite element framework of OpenSees (Fenves 2005) to come up with a finite element program called Simulation of Reinforced Concrete Structures (SRCS) (Zhong 2005, Mo et al. 2008). CSMM for PC is being currently implemented into SRCS to make the program applicable to reinforced as well as prestressed concrete. The generalized program is called Simulation of Concrete Structures (SCS). In this paper, the CSMM for RC/PC in material scale is first introduced. Basically, the constitutive relationships of the materials, including uniaxial constitutive relationship of concrete, uniaxial constitutive relationships of reinforcements embedded in concrete and constitutive relationship of concrete in shear, are determined by testing RC/PC full-scale panels in a Universal Panel Tester available at the University of Houston. The formulation in element scale is then derived, including equilibrium and compatibility equations, relationship between biaxial strains and uniaxial strains, material stiffness matrix and RC plane stress element. Finally the formulated results with RC/PC plane stress elements are implemented in structure scale into a finite element program based on the framework of OpenSees to predict the structural behavior of RC/PC thin-walled structures subjected to earthquake-type loading. The accuracy of the multiscale modeling technique is validated by comparing the simulated responses of RC shear walls subjected to reversed cyclic loading and shake table excitations with test data. The response of a post tensioned precast column under reversed cyclic loads has also been simulated to check the accuracy of SCS which is currently under development. This multiscale modeling technique greatly improves the simulation capability of RC thin-walled structures available to researchers and engineers.