• 제목/요약/키워드: Stress softening

검색결과 258건 처리시간 0.031초

고결된 하상모래의 전단거동 (Shear Behaviour of Cemened River Sand)

  • 정우섭;김영수
    • 한국지반공학회논문집
    • /
    • 제23권2호
    • /
    • pp.35-45
    • /
    • 2007
  • 본 연구에서는 낙동강하상모래에 소량의 포틀랜드시멘트를 고결작용제로 사용한 시멘트혼합토의 제체재료의 적합성검토 설계 및 해석에 필요한 기초자료를 제공하고자 배수조건의 삼축압축시험을 수행하여 시멘트혼합율의 증가에 따른 전단거동을 분석하였다. 시멘트혼합율의 증가에 따라 첨두강도 및 탄성계수는 증가 하였고 시멘트의 결합력에 의하여 다일레이션이 억제되었으나 시멘트 결합력의 파괴후 다일레이션은 증가하였다. 그리고 응력-변형률 곡선에서 연화거동이 나타났으며 시멘트혼합율의 증가에 따라 점착력 및 내부마찰각이 증가하였다.

인가전위 하에서 HT-60강 용접부의 SCC특성 평가 (Evaluation on the Characteristics of Stress Corrosion Cracking for the Weldment of HT-60 Steel under Applied Potentials)

  • 나의균
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.896-903
    • /
    • 2002
  • The susceptibility of SCC for the weldment and PWHT specimens of HT-60 steel was evaluated using a slow strain rate method under applied potential by means of the potentiostat in synthetic seawater. In case of the parent, anodic polarization voltage was inappropriate in elongating the time to failure(TTF). -0.8V corresponding to cathodic protection range is most effective in improving the SCC resistance against corrosive environment. In case of the weldment, the values of reduction of area(ROA) and TTF at -0.68V corresponding to cathodic polarization value were 45.2% and 715,809sec which were the largest and longest life among other applied potentials. Those were vise versa at -1.1V. In case of the PWHT specimens, TTF and ROA at -0.68V was longest and largest like the weldment. Besides, PWHT is effective in prolonging the time to failure of the welded off-shore structure due to softening of effect. Regardless of the weldment and PWHT specimen, as corrosion rate gets higher, TTF becomes shorter and deformation behaviour for the weldment and PWHT specimen at -1.1V was shown to be irregular. Finally, it was found that specimens showed brittle fracture at -1.1V, but more ductile fracture accompanying the micro-cracks at applied potential of -0.68V.

AISI 316 스테인리스강의 고온 변형특성에 관한 연구 (Rot Deformation Behavior of AISI 316 Stainless Steel)

  • 김성일;유연철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.293-296
    • /
    • 2001
  • The dynamic softening mechanisms of AISI 316, AISI 304 and AISI 430 stainless steels were studied with torsion test in the temperature range of $900 - 1200^{\circ}C$ and the strain rate range of $5.0x10^{-2}-5.0x10^0/sec$. The austenitic stainless steels, such as AISI 316 and AISI 304 were softened by dynamic recrystallization (DRX) during hot deformation. Also, the evolutions of flow stress and microstructure of AISI 430 ferritic stainless steel show the characteristics of continuous dynamic recrystallization (CDRX). To establish the quantitative equations for DRX of AISI 316 stainless steel, the evolution of flow stress curve with strain was analyzed. The critical strain (${\varepsilon}_c$) and strain for maximum softening rate (${\varepsilon}^{*}$) could be confirmed by the analysis of work hardening rate ($d{\sigma}/d{\varepsilon}={\theta}$). The volume fraction of dynamic recrystallization ($X_{DRX}$) as a function of processing variables, such as strain rate ( $\varepsilon$ ), temperature (T), and strain ( $\varepsilon$ ) were established using the ${\epsilon}_c$ and ${\varepsilon}^{*}$. For the exact prediction the ${\varepsilon}_c,\;{\varepsilon}^{*}$ and Avrami' exponent (m') were quantitatively expressed by dimensionless parameter, Z/A, respectively. It was found that the calculated results were agreed with the experimental data for the steels at my deformation conditions. Also, we can reasonably conclude that the DRX, CDRX and grain refinement of stainless steels can be achieved by large strain deformation at high Z parameter condition.

  • PDF

고결된 하상모래의 압축강도 추정 (Estimation of Compressive Strength for Cemented River Sand)

  • 정우섭;윤길림;김병탁
    • 한국지반공학회논문집
    • /
    • 제24권4호
    • /
    • pp.67-78
    • /
    • 2008
  • 본 연구에서는 시멘트의 고결효과를 정량적으로 파악하기 위하여 낙동강하상모래와 소량의 포틀랜드시멘트를 혼합하여 고결된 모래에 대하여 일축압축시험 및 배수조건과 비배수 조건의 삼축압축시험을 수행하였다. 시멘트혼합율의 증가에 따라 첨두강도 및 탄성계수는 증가하였고 시멘트의 결합력에 의하여 다일레이션 및 과잉간극수압이 억제되었으나 시멘트 결합력의 파괴 후 증가된 모래입자크기에 의하여 증가하였다. 그리고 배수조건의 응력-변형률 곡선은 연화거동이 나타났지만 비배수조건에서는 증가된 부(-)의 과잉간극수압에 의한 유효응력의 증가로 경화거동을 나타냈다. 각 조건에 대한 강도증가량의 예측을 위하여 선형을 가정한 다중회귀분석을 실시한 결과 제시된 경험식의 결정계수는 $0.81{\sim}0.91$로 나타나 신뢰성이 높은 것으로 평가되었으며 건조밀도의 경우 고결된 모래의 입도조건을 동시에 고려할 수 있어 고결된 모래의 강도를 결정하는데 중요한 변수로 분석되었다.

Deformation Behaviour of Ti-8Ta-3Nb During Hot Forging

  • Lee Kyung Won;Ban Jae Sam;Kim Sun Jin;Cho Kyu Zong
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.13-18
    • /
    • 2006
  • Ti-8Ta-3Nb, as a new biomaterial, was prepared by cast and swaging process. Their deformation behavior of Ti-8Ta-3Nb alloy has been characterized on the basis of its flow stress variation obtained from the true strain rate compression testing in the temperature of $700-900^{\circ}C$ and strain rate of $0.001-10\;s^{-1}$. At the strain rates lower than $0.1\;s^{-1}$ and the all temperature ranges which consist of two phase ${\alpha}+{\beta}$ as well as single ${\beta}$ phase fields, the flow curves show a small degree of flow softening behavior. In contrast, the shapes of the flow curves at other strain rates indicate unstable behavior. The shapes of the flow curves were similar in both as-cast and swaged specimen as well as in both ${\alpha}+{\beta}$ phase and ${\beta}$ phase. The flow stress data did not obey the kinetic rate equation over the entire regime of testing but a good fit has been obtained in the intermediate range of temperatures ($750-850^{\circ}C$). In this range, a stress exponent value of about 7.7 in as-cast specimens and about 6.2 in swaged specimens with an apparent activation energy of about 300 kJ/mol and about 206 kJ/mol respectively have been evaluated.

강 봉(SM45C) 맞대기 용접부의 피로수명 평가 (Estimation of Fatigue Life in Butt-Welded Zone of SM45C Steel Rod)

  • 오병덕;이용복
    • Journal of Welding and Joining
    • /
    • 제26권3호
    • /
    • pp.45-50
    • /
    • 2008
  • SM45C steel rods being used generally for power transmission shafts and machine components was selected and welded by Butt-GMAW(Gas Metal Arc Welding) method. An estimation of fatigue life was studied by constructing S-N curve. Fatigue strength of base metal zone showed higher values than one of weld zone in low cycles between $10^4$ and $10^6$cycles. However, significant decrease in fatigue strength of base metal was found around $10^6$cycles, which were almost same as one of heat affected zone. This decrease was attributed that initial residual stress of the steel rods distributed by drawing process was diminished by continually applied load, and resulted in softening of base metal. The fatigue limit of the weld zone was highest in the boundary between deposited metal zone and heat affected zone, and followed by in the order of deposited metal zone, base metal zone, and heat affected zone. Based on these results, it is revealed that the stress for safety design of machine components using SM45C butt-welded steel rods must be selected within the region of the lowest fatigue limit of heat affected zone.

Meso-Scale Approach for Prediction of Mechanical Property and Degradation of Concrete

  • Ueda, Tamon
    • Corrosion Science and Technology
    • /
    • 제3권3호
    • /
    • pp.87-97
    • /
    • 2004
  • This paper presents a new approach with meso scale structure models to express mechanical property, such as stress - strain relationships, of concrete. This approach is successful to represent both uniaxial tension and uniaxial compression stress - strain relationship, which is in macro scale. The meso scale approach is also applied to predict degraded mechanical properties of frost-damaged concrete. The degradation of mechanical properties with frost-damaged concrete was carefully observed. Strength and stiffness in both tension and compression decrease with freezing and thawing cycles (FTC), while stress-free crack opening in tension softening increases. First attempt shows that the numerical simulation can express the experimentally observed degradation by introducing changes in the meso scale structure in concrete, which are assumed based on observed damages in the concrete subjected to FTC. At the end applicability of the meso scale approach to prediction of the degradation by combined effects of salt attack and FTC is discussed. It is shown that clarification of effects of frost damage in concrete on corrosion progress and on crack development in the damaged cover concrete due to corrosion is one of the issues for which the meso scale approach is useful.

Cr-Mo鋼 熔接熱影響部 의 破壞靭性 에 미치는 熔接後 熱處理 의 影響 (The Effect of PWHT on Fracture Toughness in HAZ of Cr-Mo Steel)

  • 정세희;임재규
    • 대한기계학회논문집
    • /
    • 제8권2호
    • /
    • pp.97-103
    • /
    • 1984
  • 본 연구에서는 이에 주목하고 잔존하는 잔유응력을 제거한 상태에서 PWHT가 용접 HAZ조직의 파괴인성에 어떠한 영향을 미치고 있느가와 잔유응력이 잔존된 상태에 서의 PWHT 유대시간과 가열속도가 파괴인성에 어떠한 영향을 미치는가를 알아보기 위 하여 공시재에 무응력과 일정응력을 가한 상태에서 유대시간과 가열속도를 변화시켜가 며 PWHT를 실족한 후 소성굽힘에 의한 COD파괴인성 시험 등을 통하여 PWHT의 영향을 검토하였다.

SUS 304강의 부식피로균열 운전속도 특성에 관한 연구 (Study on Characteristics of Corrosion Fatigue Crack Growh Rate of SUS 304 Stainlss Steel)

  • 임우조;김부안
    • 한국해양공학회지
    • /
    • 제1권2호
    • /
    • pp.93-100
    • /
    • 1987
  • Corrosion fatigue cracking of the austenitic stainless steel(bese metal & heat affected zone by TIG weld) was studied experimentally under the environments of various specific resistance and air. The characteristics of corrosion fatigue crack growth rate and the environmental constants of paris' rule were investigated for SUS 304 weldments in the various specific resistance. The influences of stress intensity factor range and corrosion on the crack growth rate were compared. The characteristics of corrosion fatigue cracking for the weldments were inspected from mechanical, electrochemical and microstructural point of view. Main results obtained are as follows: 1) As the specific resistance decreases, the environmental constant C of paris'rule increases(hence the corrosion fatigue crack growth rate is rapid), but the environmental constant m decreases, so the effect of corrosion to the crack growth rate is more susceptible than thet of stress intensity factor range. 2) As the stress intensity factor range decreases, the corrosion fatigue crack growth rate of heat affected zone is more susceptible than that of the base metal. 3) The corrosion fatigue crack growth rate of the heat affected zone is more rapid than that of the base metal, because of the phenomenon of softening and the less noble potential coused by wedlding heat cycle. 4) The corrosion fatigue cracking of SUS 304 weldment appears transgranular fracture.

  • PDF

Localized deformation in sands and glass beads subjected to plane strain compressions

  • Zhuang, Li;Nakata, Yukio;Lee, In-Mo
    • Geomechanics and Engineering
    • /
    • 제5권6호
    • /
    • pp.499-517
    • /
    • 2013
  • In order to investigate shear behavior of granular materials due to excavation and associated unloading actions, load-controlled plane strain compression tests under decreasing confining pressure were performed under drained conditions and the results were compared with the conventional plane strain compression tests. Four types of granular material consisting of two quartz sands and two glass beads were used to investigate particle shape effects. It is clarified that macro stress-strain behavior is more easily influenced by stress level and stress path in sands than in glass beads. Development of localized deformation was analyzed using photogrammetry method. It was found that shear bands are generated before peak strength and shear band patterns vary during the whole shearing process. Under the same test condition, shear band thickness in the two sands was smaller than that in one type of glass beads even if the materials have almost the same mean particle size. Shear band thickness also decreased with increase of confining pressure regardless of particle shape or size. Local maximum shear strain inside shear band grew approximately linearly with global axial strain from onset of shear band to the end of softening. The growth rate is found related to shear band thickness. The wider shear band, the relatively lower the growth rate. Finally, observed shear band inclination angles were compared with classical Coulomb and Roscoe solutions and different results were found for sands and glass beads.