• Title/Summary/Keyword: Stress softening

Search Result 258, Processing Time 0.024 seconds

Experimental Studies of Shearing Properties on Compacted Nakdong River Silty Sands under Unconsolidated Undrained Condition (비압밀비배수조건에서 다져진 낙동강 실트질 모래의 전단거동에 대한 실험적 연구)

  • Khin, Swe Tint;Kim, Young-Su
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.12
    • /
    • pp.57-62
    • /
    • 2010
  • In this study, the effect of different silt contents on the shear characteristics of silty sands was evaluated. Two series of triaxial compression tests were performed on the cylindrical specimens of compacted Nakdong river sand with 10% and 30% silt contents under unconsolidated undrained condition. All identical specimens were prepared to compact with same initial water content for five layers and saturated using control panel and then sheared under initial effective confining pressure, 100 to 400kPa. All specimens exhibited a strain softening tendency after failure in stress-strain curves and deviator stresses of specimens with 10% silt content were greater than those of specimens with 30% silt content. Pore water pressures of specimens with 10% silt content were observed negative(i.e. swelling) due to increasing void ratio after failure but those of specimens with 30% silt content were shown only positive. The behavior of compacted cylindrical specimens with low silt content was more dilative than that of high silt content. Peak deviator stresses decreased as increasing silt content and peak pore water pressures increased as increasing silt content.

Study on Characteristics of SCC and AE Signals for Weld HAZ of HT-60 Steel (HT-60강 용접부의 SCC및 AE신호특성에 관한 연구)

  • Na, Eui-Gyun;Yu, Hyo-Sun;Kim, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.62-68
    • /
    • 2001
  • In order to characterize the microscopic fracture behaviour of the weldment din stress corrosion cracking(SCC) phenomena, SCC and acoustic emission(AE) tests were carried out simultaneously and the correlation between mechanical paramenters obtained from SCC and AE tests was investigated. In the case of base metal, much more AE events were produced at -0.5V than at -0.8V because of the dissolution mechanism before the maximum load. Regardless of the applied voltages to the specimens, however, AE events decreased after the maximum load. In the case of weldment, lots of AE events with larger amplitude $range(40{\sim}100dB)$ were produced because of the singularities of weld HAZ in comparision to the base metal and post-weld heat-treated(PWHT) specimens. Numerous and larger cracks for the weldment were observed on the fractured surfaces by SEM examination. From these results, it was concluded that SCC for the weldment appeared most severely in synthetic seawater. Weld HAZ was softened by PWHT which also contributed to the reduced susceptibility to corrosive environment in comparison to the weldment.

  • PDF

Calculation of Horizontal Shear Strength in Reinforced Concrete Composite Beams (철근콘크리트 합성보의 수평전단강도 산정)

  • Kim, Min-Joong;Lee, Gi-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.772-781
    • /
    • 2020
  • A direct shear member resists external forces through the shear transfer of reinforcing bars placed at the concrete interface. The current concrete structural design code uses empirical formulas based on the shear friction analogy, which is applied to the horizontal shear of concrete composite beams. However, in the case of a member with a large amount of reinforcing bars, the shear strength obtained through the empirical formula is lower than the measured value. In this paper, the limit state of newly constructed composite beams on an existing concrete girder is defined using stress field theory, and material constitutive laws are applied to gain horizontal shear strength while considering the tension-stiffening and softening effects of concrete struts. A simplified method of calculating the shear strength is proposed, which was validated by comparing it with the related design code provisions. As a result, it was confirmed that the method generally shows a similar tendency to the experimental results when the shear reinforcing bar yields, unlike the regulations of the design code, where differences in the predicted value of shear strength occur according to the shear reinforcement ratio.

Case Study of the Stability of a Large Cut-Slope at a Tunnel Portal (터널 입구부 대절토 사면 안정성 사례 연구)

  • Park, Dong Soon;Bae, Jong-Soem
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.115-129
    • /
    • 2015
  • The cut-slope of a large-sectional tunnel portal is recognized as a potential area of weakness due to unstable stress distribution and possible permanent displacement. This paper presents a case study of a slope failure and remediation for a large-scale cut-slope at a tunnel portal. Extensive rock-slope brittle failure occurred along discontinuities in the rock mass after 46 mm of rainfall, which caused instability of the upper part of the cut-slope. Based on a geological survey and face mapping, the reason for failure is believed to be the presence of thin clay fill in discontinuities in the weathered rock mass and consequent saturationinduced joint weakening. The granite-gneiss rock mass has a high content of alkali-feldspar, indicating a vulnerability to weathering. Immediately before the slope failure, a sharp increase in displacement rate was indicated by settlement-time histories, and this observation can contribute to the safety management criteria for slope stability. In this case study, emergency remediation was performed to prevent further hazard and to facilitate reconstruction, and counterweight fill and concrete filling of voids were successfully applied. For ultimate remediation, the grid anchor-blocks were used for slope stabilization, and additional rock bolts and grouting were applied inside the tunnel. Limit-equilibrium slope stability analysis and analyses of strereographic projections confirmed the instability of the original slope and the effectiveness of reinforcing methods. After the application of reinforcing measures, instrumental monitoring indicated that the slope and the tunnel remained stable. This case study is expected to serve as a valuable reference for similar engineering cases of large-sectional slope stability.

A Study on the Mechanical and Rheological Properties of the Recycled Polyethylene Composites with Ground Waste Tire Powder (재생 폴리에틸렌/폐타이어 분말 복합체의 기계적 특성 및 유변학적 특성에 관한 연구)

  • Kye, H.;Shin, K.;Bang, D.
    • Elastomers and Composites
    • /
    • v.41 no.2
    • /
    • pp.97-107
    • /
    • 2006
  • The recycled polyethylene composites with various ratio of ground waste tire powder were manufactured by using a fully intermeshing co-rotating twin screw extruder for the reuse of waste tire scrap. In this investigation, the ground waste tire powders (GWTP) were blended with virgin HDPE and recycled polyethylene in the weight ratio of 0 to 50 wt.%. Mechanical properties such as tensile strength, elongation at break and impact strength were measured by using ASTM standard. The experimental results for the various composite showed that the tensile strength of composites decreased with increasing GWTP ratio, while elongation at break increased with the amounts of GWTP. On the other hand, the impact strength for the three kinds of composites showed maximum at the 30 wt.% of GWTP and then decreased. Morphology of the fracture surface tends to be rough with increasing waste tire powder content. Rheological properties were investigated by measuring the shear viscosity against shear rates and softening temperatures. They showed that melt viscosity of rubber composites in this study subsequently increased with increasing GWTP content as a result of increase of flow resistance against external stress and followed a Power-law behavior.

Life Prediction of Low Cycle Fatigue for Ni-base Superalloy GTD111 DS at Elevated Temperature (Ni기 초내열합금 GTD111 DS의 고온 저주기 피로수명 예측)

  • Kim, Jin Yeol;Yoon, Dong Hyun;Kim, Jae Hoon;Bae, Si Yeon;Chang, Sung Yong;Chang, Sung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.765-770
    • /
    • 2017
  • GTD111 DS of nickel base superalloy has been used for gas turbine blades. In this study, low cycle fatigue test was conducted on the GTD111 DS alloy by setting conditions similar to the real operating environment. The low cycle fatigue tests were conducted at room temperature, $760^{\circ}C$, $870^{\circ}C$, and various strain amplitudes. Test results showed that fatigue life decreased with increasing total strain amplitude. Cyclic hardening response was observed at room temperature and $760^{\circ}C$; however, tests conducted at $870^{\circ}C$ showed cyclic softening response. Stress relaxation was observed at $870^{\circ}C$ because creep effects occurred from holding time. A relationship between fatigue life and total strain range was obtained from the Coffin-Manson method. The fratography using a SEM was carried out at the crack initiation and propagation regions.

Characteristics of Deformation and Shear Strength of Parallel Grading Coarse-grained Materials Using Large Triaxial Test Equipment (대형삼축시험에 의한 상사입도 조립재료의 변형 및 전단강도 특성)

  • Jin, Guang-Ri;Snin, Dong-Hoon;Im, Eun-Sang;Kim, Ki-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.57-67
    • /
    • 2009
  • Along with the advanced construction technologies, the maximum size of coarse aggregate used for dam construction ranges from several cm to 1m. Testing the original gradation samples is not only expensive but also causes many technical difficulties. Generally, indoor tests are performed on the samples with the parallel grading method after which the results are applied to the design and interpretation of the actual geotechnical structure. In order to anticipate the exact behavior characteristics for the geotechnical structure, it is necessary to understand the changes in the shear behavior. In this study, the Large Triaxial Test was performed on the parallel grading method samples that were restructured with river bed sand-gravel, with a different maximum size, which is the material that was used to construct Dam B in Korea. And the Stress - Strain characteristics of the parallel grading method samples and the characteristics of the shear strength were compared and analyzed. In the test results, the coarse-grained showed strain softening and expansion behavior of the volume, which became more obvious as the maximum size increased. The internal angle of friction and the shear strength appeared to increase as the maximum size of the parallel grading method sample increased.

Tensile Properties of Hybrid Fiber Reinforced Cement Composite according to the Hooked & Smooth Steel Fiber Blending Ratio and Strain Rate (후크형 및 스무스형 강섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장특성)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.31-39
    • /
    • 2021
  • In this study, the fiber blending ratio and strain rate effect on the tensile properties synergy effect of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber(HSF) and smooth steel fiber(SSF) were used for reinforcing fiber. The fiber blending ratio of HSF+SSF were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, in the cement composite(HSF2.0) reinforced with HSF, as the strain rate increases, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by increase of micro cracks in the matrix around HSF. When 0.5 vol.% of SSF was mixed, the micro cracks was effectively controlled at the static rate, but it was not effective in controlling micro cracks and improving the pull-out resistance of HSF at the high rate. On the other hand, the specimen(HSF1.0SSF1.0) in which 1.0vol.% HSF and 1.0vol.% SSF were mixed, each fibers controls against micro and macro cracks, and SSF improves the pull-out resistance of HSF effectively. Thus, the fiber blending effect of the strain capacity and energy absorption capacity was significantly increased at the high rate, and it showed the highest dynamic increase factor of the tensile strength, strain capacity and peak toughness. On the other hand, the incorporation of 1.5 vol.% SSF increases the number of fibers in the matrix and improves the pull-out resistance of HSF, resulting in the highest fiber blending effect of tensile strength and softening toughness. But as a low volume fraction of HSF which controlling macro crack, it was not effective for synergy of strain capacity and peak toughness.