• 제목/요약/키워드: Stress ratio

검색결과 4,037건 처리시간 0.031초

쇄석다짐말뚝의 응력분담비에 관한 현장실험 연구 (A Field Test Study on stress concentration ratio of Crushed-Stone Column Pile)

  • 이민희;임종철;황근배;최용규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.525-532
    • /
    • 2004
  • Among soft ground treatment methods with granular soil used in domestic, the sand compaction pile method has been utilized greatly, but, as a result of exhaustion of sand and increase of unit cost, a necessity of an alternative method is suggested. In this study, the static load tests for crushed-stone compaction piles which were constructed on test field were performed. Based on test results, stress concentration ratios between the crushed-stone compaction pile and the soft ground were investigated and estimated. The stress concentration ratio was the range of 1.7 to 3.0 and the higher it was the more replacement rate was increased.

  • PDF

複合組織鋼의 疲勞균열진전거동과 균열닫힘조건에 미치는 應力比 및 微視組織크기의 영향 (Influence of stress ratio and microstructural size on fatigue crack growth and crack closure in near-threshold)

  • 김정규;황돈영
    • 대한기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.1343-1349
    • /
    • 1988
  • In this study, it is investigated for the effects of stress ratio and grain size on fatigue crack growth behavior and crack closure, in ferrite-martensite dual phase steels. The results obtained are as follows ; .DELTA. $K_{th}$ is independent of the ferrite grain size, but decreases with increasing stress ratio. The relation between .DELTA. $K_{th}$ and stress ratio R is as follows : .DELTA. $K_{th}$ =15.1(1-0.95R). But (.DELTA. $K_{eff}$)$_{th}$ in terms of crack closure is approximately 2.5 MPa.root.m. Also, variation of the degree of crack deflection to crack tip opening displacement at the minimum load is considered as a parameter of crack closure.e.e.

면내력을 받는 변단면 후판의 진동해석 (Vibration Analysis of Tapered Thick Plate Subjected to Static In-plane Stress)

  • 정진택;오숙경;이용수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.521-525
    • /
    • 2004
  • This paper has the object of investigating natural frequencies of tapered thick plate on pasternak foundation by means of finite element method and providing kinetic design data for mat of building structures. vibration analysis that tapered thick plate subjected to In-plane stress is presented in this paper Finite element analysis of rectangular plate is done by use of rectangular finite element with 8-nodes. In order to analysis tapered plate which is supported on pasternak foundation. The ratio of In-plane stress to critical load is varied with $0.2\sigma_{cr},\;0.4\sigma_{cr},\;0.6\sigma_{cr}$, and the Winkler parameter is 0, 10, 100, 1000 the shear foundation parameter 0, 10. The taper ratio is applied as 0.0, 0.2, 0.4, 0.6, 0.8 respectively. This paper is analyzed varying thickness by taper ratio with In-plane stress.

  • PDF

Cyclic liquefaction and pore pressure response of sand-silt mixtures

  • Dash, H.K.;Sitharam, T.G.
    • Geomechanics and Engineering
    • /
    • 제3권2호
    • /
    • pp.83-108
    • /
    • 2011
  • The effect of non-plastic fines (silt) on liquefaction and pore pressure generation characteristics of saturated sands was studied through undrained stress controlled cyclic triaxial tests using cylindrical specimens of size 50 mm diameter and height 100 mm at different cyclic stress ratios and at a frequency of 0.1 Hz. The tests were carried out in the laboratory adopting various measures of sample density through various approaches namely gross void ratio approach, relative density approach, sand skeleton void ratio approach, and interfine void ratio approach. The limiting silt content and the relative density of a specimen were found to influence the undrained cyclic response of sand-silt mixtures to a great extent. Undrained cyclic response was observed to be independent of silt content at very high relative densities. However, the presence of fines significantly influenced this response of loose to medium dense specimens. Combined analyses of cyclic resistance have been done using the entire data collected from all the approaches.

등방 및 비등방 압밀된 다짐풍화화강토의 항복곡선 (Yielding Curve of Isotropic and Anisotropic Consolidated Compacted Weathered Granite Soil)

  • 정진섭;양재혁
    • 한국농공학회지
    • /
    • 제44권1호
    • /
    • pp.103-115
    • /
    • 2002
  • During this study, various stress path tests in previous isotropic and anisotropic (compression and tension) stress histories are performed on weathered granite soil sampled at Iksan, Jeonbuk. Yielding points are determined from various stress-strain curves(stress ratio-shear strain, volumetric strain, normalized energy and dissipated total energy curves). The shape and characteristics of isotropic and anisotropic yielding curves are examined. The main results are summarized as follows . 1) Yielding curries defined from stress ratio - normarized energy and dissipated total energy curves show almost perfect ellipse. 2) Directions of plastic strain incremental vector are not perpendicular to yielding curve. 3) Normarized energy and dissipated total energy spread with similar tendency with respect to yielding currie in stress space.

용접잔류응력장 중에서의 Aluminum-Alloy용접재료의 피로균열성장거동 연구 (A study on the fatigue crack growth behavior of aluminum alloy weldments in welding residual stress fields)

  • 최용식;정영석
    • Journal of Welding and Joining
    • /
    • 제7권1호
    • /
    • pp.28-35
    • /
    • 1989
  • The fatigue crack growth behavior in GTA butt welded joints of Al-Alloy 5052-H38 was examined using Single Edge Notched(SEN) specimens. It is well known that welding residual stress has marked influence on fatigue crack growth rate in welded structure. In the general area of fatigue crack growth in the presence of residual stress, it is noted that the correction of stress intensity factor (K) to account for residual stress is important for the determination of both stress intensity factor range(.DELTA.K) and stress ratio(R) during a loading cycle. The crack growth rate(da/dN) in welded joints were correlated with the effective stress intensity factor range(.DELTA.Keff) which was estimated by superposition of the respective stress intensity factors for the residual stress field and for the applied stress. However, redistribution of residual stress occurs during crack growth and its effect is not negligible. In this study, fatigue crack growth characteristics of the welded joints were examined by using superposition of redistributed residual stress and discussed in comparison with the results of the initial welding residual stress superposition.

  • PDF

지반보강용 그라우팅 말뚝의 응력분담비에 대한 수치해석적 연구 (Numerical Study on the Stress-distribution Ratio of Grouting Pile for Reinforced Ground)

  • 이경주;이준규;張維維;송기일
    • 한국지반공학회논문집
    • /
    • 제39권2호
    • /
    • pp.19-30
    • /
    • 2023
  • 연약지반 대책공법으로 적용되는 다짐모래말뚝과 같은 지중구조물은 주로 복합지반 설계법에 의해 침하 및 안정성을 분석한다. 복합지반 설계법의 기본원리는 아칭효과이며 말뚝의 보강효과는 응력분담비로 평가한다. 탄성적 특성을 갖는 그라우팅 말뚝을 지반보강공법으로 적용할 때 기존의 응력분담비 평가는 말뚝이 지표까지 설치되어 상재하중이 말뚝과 원지반에 같이 직접 재하되는 경우만을 고려해 왔다. 본 연구에서는 지반보강 말뚝의 설치를 지표까지 올리지 않고 지중 어느 위치에서 마감할 때에는 지금까지의 연구들에 의해 적용된 응력분담비 적용 방법이 달라져야 한다는 것을 보여주었다. 고강도 Jet grouting이 적용되었을 때 원지반에 대한 그라우팅 말뚝의 응력분담비(n)는 통상 30~50 범위의 값을 적용한다. 그러나 이는 지표까지 말뚝이 놓이는 경우이고 말뚝 상단의 위치가 지표로부터 멀리 깊게 위치될 경우 응력분담 효과가 급격히 저감되며 응력구(stress bulb) 경계가 되는 깊이부터는 정량적 값 1.5에 수렴했다.

反復三軸壓縮試驗에 의한 砂質土의 液狀化 評價에 관한 硏究 (A Study on the Evaluation of Liquefaction of Sandy Soils by the Cyclic Triaxial Compression Test)

  • 고재만;도덕현
    • 한국농공학회지
    • /
    • 제33권3호
    • /
    • pp.51-62
    • /
    • 1991
  • A comprehensive laboratory investigation of the liquefaction characteristics of Jumunjin standard sand. Seoul sand and Hongsung sand was peformed by the undrained cyclic triaxial compression test under different relative densities, confining pressures and cyclic deviator stresses. The results obtained are as follows ; 1. Liquefaction potential was dominated by the stress ratio at a given number of cycle. That is, the number of cycle required to cause initial liquefaction became samller as the stress ratio increased. 2. Liquefaction potential of a sand was infliuenced by initial relative density or void ratio. Under a given relative density. liquefaction potential of Jumunjin standard sand and Seoul sand was smaller than that of Hongsung sand. 3. The pore pressure ratio of Hongsung sand was the smallest three under a given relative density and stress ratio, and it showed higher value when the cyclic stress and the shear strain were high. 4. An excessive pore pressure ratio not found when initial shear was smaller than 0.01%, and the pore pressure ratio started to increase when initial shear became greater than 0.01%. 5. Soil texture is an important factor to cause liquefaction, and liquefaction potential decreased a the mean grain size decreased. however the sand having fine grain such as Hongsung sand showed somewhat higher liquefaction potential. 6. Based on the analysis of the specimens whose number of the cycles to cause liquefaction was 8~12, it was found that the relationship between density and stress ratio was linear. The curves for Hongsung sand was steeper than the other. 7. From the above results and the method suggested by Seed-Idriss, it may be considered that the damages by Hongsung earthquake was not directly caused by liquefaction.

  • PDF

Investigation of influences of mixing parameters on acoustoelastic coefficient of concrete using coda wave interferometry

  • Shin, Sung Woo;Lee, Jiyong;Kim, Jeong-Su;Shin, Joonwoo
    • Smart Structures and Systems
    • /
    • 제17권1호
    • /
    • pp.73-89
    • /
    • 2016
  • The stress dependence of ultrasonic wave velocity is known as the acoustoelastic effect. This effect is useful for stress monitoring if the acoustoelastic coefficient of a subject medium is known. The acoustoelastic coefficients of metallic materials such as steel have been studied widely. However, the acoustoelastic coefficient of concrete has not been well understood yet. Basic constituents of concrete are water, cement, and aggregates. The mix proportion of those constituents greatly affects many mechanical and physical properties of concrete and so does the acoustoelastic coefficient of concrete. In this study, influence of the water-cement ratio (w/c ratio) and the fine-coarse aggregates ratio (fa/ta ratio) on the acoustoelastic coefficient of concrete was investigated. The w/c and the fa/ta ratios are important parameters in mix design and affect wave behaviors in concrete. Load-controlled uni-axial compression tests were performed on concrete specimens. Ultrasonic wave measurements were also performed during the compression tests. The stretching coda wave interferometry method was used to obtain the relative velocity change of ultrasonic waves with respect to the stress level of the specimens. From the experimental results, it was found that the w/c ratio greatly affects the acoustoelastic coefficient while the fa/ta ratio does not. The acoustoelastic coefficient increased from $0.003073MPa^{-1}$ to $0.005553MPa^{-1}$ when the w/c ratio was increased from 0.4 to 0.5. On the other hand, the acoustoelastic coefficient changed in small from $0.003606MPa^{-1}$ to $0.003801MPa^{-1}$ when the fa/ta ratio was increased from 0.3 to 0.5. Finally, it was also found that the relative velocity change has a linear relationship with the stress level of concrete.

모래다짐말뚝으로 개량된 연약지반의 응력분담특성 (Stress Concentration Characteristics of Soft Ground Treated by Sand Compaction Pile)

  • 유남재;박병수;정길수;김상진
    • 산업기술연구
    • /
    • 제22권A호
    • /
    • pp.145-151
    • /
    • 2002
  • This paper is results of extensive centrifuge model experiments about design factors influencing the bearing capacity and the settlement behaviors of SCP (Sand Compaction Pile). Centrifuge model tests were carried out changing design factors for SCP method such as replacement area ratio (as= 20, 40, 70%), Improvement ratio to footing width (W/B = 1, 2, 3), and amount of fines m sand pile (#200 = 5, 10, 15). Therefore, the effects of these design factors on the bearing capacity and the settlement behavior of SCP were investigated and changes of stress concentratio rato due to such an design factors were also investigated. Centrifuge model testing technique for preparing and installing centrifuge model of sand compaction pile, using freezing them, was also developed. As results of centrifuge model tests, more fines in sand compaction pile increases the bearing capacity of SCP. Optimum improvement ratio to footing width was found to be 2. Values of stress concentration ratio was in the ranges of 1.5 - 3.5. The depth of bulging in sand plies was found in the range of 2.0 - 2.5 times of pile diameter.

  • PDF