• Title/Summary/Keyword: Stress intensity

Search Result 2,000, Processing Time 0.026 seconds

Changes of superoxide dismutase and glutathione peroxidase in light damaged rat retina

  • Kaidzu, Sachiko;Tanito, Masaki;Takanashi, Taiji;Ohira, Akihiro
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.430-432
    • /
    • 2002
  • The changes in expression of copper-zinc superoxide dismutase (CuZn-SOD), manganese superoxide dismutase (Mn-SOD) and glutathione peroxidase (GPX) in light-damaged rat retinas were examined. Sprague-Dawley rats (male, 6-weeks-old) were maintained on a cyclic photoperiod (12 hours light and 12 hours darkness) for 2 weeks. The illumination intensity during the light period was 80 lux. To induce light damage to the retina, a high-intensity illumination (3000-lux) was applied to the animals for 24 hours. After light exposure, the animals were returned to cyclic lighting. Eyes were enucleated 12 and 24 hours after light exposure started or 1,3, and 7 days after light exposure ended. Eyes were fixed and embedded in paraffin wax. Tissues were cut into 4${\mu}{\textrm}{m}$-thick sections. Sections were immunostained using antibody against CuZn-SOD, Mn-SOD, GPX and 8-hydroxy-deoxyguanocine (8-OHdG) as oxidative stress marker. 8-OHdG was observed in the outer nuclear layer (ONL) and retinal pigment epithelium (RPE) during light exposure. In light-damaged retinas CuZn-SOD labeling was up regulated in the ONL and RPE. Mn-SOD labeling was up regulated in rod inner segments (RIS) during light exposure and that in the RPE was up regulated after exposure. GPX labeling was observed in rod outer segments (ROS) during light exposure. GPX labeling was also observed in the RPE during and after light exposure. All three enzymes were observed in the outer retina, which suffered light damage, but occurred in defferent layers except within the RPE, in which case all three were expressed. These enzymes may play complementary roles as protective factors in light-damaged retinas.

  • PDF

피로와 파괴력학(I)

  • 최용식
    • Journal of the KSME
    • /
    • v.16 no.4
    • /
    • pp.41-48
    • /
    • 1976
  • 재료의 피로문제에 대해서는 꽤 오래 전부터 많은 연구가 이루어져왔고, 피로의 현상파악에서부 터 피로이론의 구명, 나아가서는 실제문제로서의 피로설계, 피로수명예측 등에 기여한 업적은 아 주 크다 하겠다. 그러나 종래의 피로문제연구의 방향이, S-N 곡선에서 얻어지는 피로한계강도 (더 정확한 표현으론 피로파괴한계강동)에 바탕을 두고, 정력확적인 설계관례인 안전계수의 도입 을 빌려, 피로강도를 실용화할려는 선에서 이루어져 왔다고 보겠다. 재료의 피로한계강도란, 그 정의로 미루어, 다분히 정적으로는 극한강도 또는 피로강도의 개념에 견주어 질 수 있는 공칭응 력으로써 탄성학적으로 해석될 수도 없고, 다만 탄역성이론의 개념을 바탕으로 근사해석례만이 허용되고 있을 뿐이다. 재료에는 소위 평활재이건 절결재이건 간에 또 검출여부에 관계없이, 내외 부에 대소각종의 결함이나 역학적 불연속부가 잠재해있음은 이미 공지의 사실이며, 이들 결합, 불 연속부등이 외하중하에서 응분의 응력집중원이 되어 재료를 전반적인 파괴로 몰고 갈 수 있다 함 도, 또한 이러한 역학적거동이 피로파괴에 까지 확장해석될 수 있을 것이란 것도 이미 잘 알려져 있는 터이라 하겠다. 재료내외부의 제결합을 응력집중이 극대인 crack로 대체해서 외하중하에서 의 응력장거동을 해석한 선형탄성파괴역학(LEFM)은, 바로 이러한 실제재료의 강도설계에 보다 큰 정확성을 부여한 방법론적 학문이라 하겠고, 나아가서는 재료의 파괴기구를 파헤치는데 진일 보적인 역학적인 수법이라 하겠다. 취성파괴, 연성파괴에 바탕을 둔 파괴역학(LEFM)을 피로파괴 에 적용시키는 데는 상당한 문제점들을 수반할 것임은 충분히 인지되나, 제한된 경계조건하에서 의 적용 예는 종래의 어떤 방법에 의한 것 보다도 피로강도설계, 안전사용 피로수명예측 등에 획기적인 진전을 보여주고 있다. 파괴역학은 crack 재의 강도학이고, 더 구체적으로 음력학대계수 (stress intensity factor) K 또는 이와 연연되는 parameter 인 strain energy release rate(G), crack-tip plactic zone size r$_{p}$,.rho., crack-tip opening displacement .phi., strain intensity 등을 쓰는 재료강도학이기 때문에, 이 수법을 피로파괴에 적용시킴은, 종래의 공칭응력으로 피로 문제를 다루던 방법과는 판이하다 하겠다. 본고에선 파괴역학의 관점에서 피로구열의 안정성장을 논하고, 과거 10여년간의 피로 crack문제에 대한 연구방법, 실험방법 등을 소개하는 방향으로 고 를 진행시켜 나가겠다.

  • PDF

Change of Slope Stability due to Slope Inclination and Surface Conditions (사면경사와 표면 조건에 따른 사면안정성 해석)

  • Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.5-11
    • /
    • 2015
  • Slope stability is affected by duration of precipitation, probable rainfall intensity, unsaturated soil property, and soil strength. The recent analyses of slope stability tend to include unsaturated analysis based on infiltration properties of soil, while researches of unsaturated soil slope tend to include the analysis of deformation and stress distribution of soil over time. However, infiltration property of unsaturated soil slope depends not only on intensity or duration of precipitation, but also on relief and surface condition, which is not considered in status quo. This research uses hydrologic model parameters of soil in order to consider effects of inclination on filtration, and carries out analysis of unsaturated soil slope to confirm the effects according to slope inclination and surface condition. In conclusion, using slope stability analysis, the need to consider infiltration rate according to inclination and surface condition was confirmed even under the same precipitation conditions.

Study of Materials and Stress Ratios on Fatigue Crack Propagation Rate Using Parameter ΔA (.DELTA.A를 파라미터로 이용한 피로크랙전파속도에 미치는 재료 및 응력비의 영향에 대한 연구)

  • 박영철;오세욱;김광영;허정원;강정호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1373-1380
    • /
    • 1992
  • The local cyclic strain distribution near the crack tip has been investigated by the fine Dot Grid Strain Measurement Method, which had been suggested strain measurement method to resolve experimental difficulties by authors. It has been found that the magnitude of the local cyclic strain distribution(.DELTA..epsilon.$_{eq}$ )near a crack tip has been varied by the applied cyclic load level and material, but the shape of the local cyclic strain distribution near the crack tip has been experimentally scrarcely altered : that is .DELTA..epsilon.$_{eq}$ = .DELTA.A.f(.theta.). $r^{-1}$ . Consequently, the local cyclic strain field near the crack tip could be favorably characterized by a single parameter fatigue strain intensity factor .DELTA.A. In addition, with the viewpoint that .DELTA.A depends on material and load level, .DELTA.A has been applied to evaluate the fatigue crack propagation rate and usefulness of the result has been considered. As a result, it has been ascertained that .DELTA.A has been a useful parameter to evaluate the fatigue crack propagation rate.

Paleostress of the Joseon and Pyeongan Supergroups in South Korea using the New Calcite Strain Gauge (NCSG)

  • Jang, Bo-An;Ko, Chin-Surk;Kim, Jung-Han;Kim, Cheong-Bin;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.311-322
    • /
    • 2014
  • Limestone bodies under the tectonic environment have experienced various tectonic processes, and also changed the stress state. In this study, calcite twins found in limestones of the Joseon Supergroup and Pyeongan Supergroup in the northeastern part of the Ogcheon Belt, South Korea were measured, then the paleostress (i.e., the maximum shortening axis) was reconstructed using the new calcite strain gauge (NCSG) technique. The average twin thickness and average twin intensity increase as the total twin strain increases. We utilize the appearance of twins, the average twin thickness and average twin intensity, and the total twin strain to estimate that the observed calcite twins were produced at temperatures of < $200^{\circ}C$ in the Joseon Supergroup and $170^{\circ}C$ in the Pyeongan Supergroup. In the Joseon Supergroup, the dominant direction of the maximum shortening axis WNW-ESE to NW-SE; NE-SW shortening is also observed. The maximum shortening axes in the Pyeongan Supergroup are oriented NW-SE and NE-SW. The NE-SW direction of maximum shortening is associated with the occurrence of the Songrim orogeny of the Paleozoic to Early Jurassic, and the NW-SE direction of maximum shortening correlates to the Daebo orogeny of the Early Jurassic to Late Jurassic. It is thus concluded that the paleostress across the study area changed from NE-SW to NW-SE during the Mesozoic.

Germanition, Shade Toarance and Community Characteristics on $\emph{Erigeron annuus}$ L.in Cheju (濟州 地域에서 개망초의 發芽 習性 및 耐陰性과 群落特性)

  • Lee, Ho-Joon;Kim, Tae-Sung;Byun, Doo-Weon
    • The Korean Journal of Ecology
    • /
    • v.15 no.2
    • /
    • pp.103-115
    • /
    • 1992
  • This dissertation, which has been prepared in the region of cheju(33o31'N, 126o32'E) from may,1987 to appril, 1989, is to elucidate the dominant characteristics of early stages in secondary succession, by examining the life history of erigeron annuus for the seeding depth of a seed was dependent upon the degree of shading. That is, on the area of ocm,the more tense the shading was, the more germination percentage was increased, while, in the case of 1.5cm, it was somewhat increased, when shading bwcame ess and less tense. The rosette of e. annuus, through its relative light intensity was decreased by shading, up to 5% of natural light, showed some strong shade tolerance, which had no difficulty in matter production. The species diversity of mixed-species community was the highest in the middle of April, the lowest in the last of may. The dominance index was the highest in the late may, the lowest in the middle of April. Toward the end of may, the occupation rate of dominance species was the highest. There was a neutral relationship between intraspecific and interspecific, owing to the differentiation of its niche, temporally and spatially. Productive structure of the community revealed a narrow leaf type which was concentratively distributed in the mid part of community height. The relative light intensity of community ground surface was 6.1%, the leaf inclination 60o,the extinction coefficient(k) 0.4, biomass of community 1,045.6 g.d.w./m2,T/Rratio 9.3, C/Frate 7.0 and sumgermanition, shade toarance and community characteristics on erigeron annuus l.in chejumed leaf area index 3.88. through the various life cycles o e.annuus, we can say that it decreases mortality of seeding caused by some stress and disturbance, for germination lasts for a long time at any opportunity available, and it promotes population growth. The strong shade tolerance of a rosette and the variableness of a life from differentiate the niche between intraspecific and interspecific within the community, and avoid the direct competition between them, thus poromoting community growth.

  • PDF

Probability of Early Retirement Among Emergency Physicians

  • Shin, Jaemyeong;Kim, Yun Jeong;Kim, Jong Kun;Lee, Dong Eun;Moon, Sungbae;Choe, Jae Young;Lee, Won Kee;Lee, Hyung Min;Cho, Kwang Hyun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.51 no.3
    • /
    • pp.154-162
    • /
    • 2018
  • Objectives: Early retirement occurs when one's job satisfaction suffers due to employment mismatch resulting from factors such as inadequate compensation. Medical doctors report high levels of job stress and burnout relative to other professionals. These levels are highest among emergency physicians (EPs), and despite general improvements in their working conditions, early retirement continues to become more common in this population. The purpose of this study was to identify the factors influencing EPs intention to retire early and to develop a probability equation for its prediction. Methods: A secondary analysis of data from the 2015 Korean Society of Emergency Physicians Survey was performed. The variables potentially influencing early retirement were organized into personal characteristics, extrinsic factors, and intrinsic factors. Logistic regression analysis was performed to identify risk factors and to develop a probability equation; these findings were then arranged in a nomogram. Results: Of the 377 survey respondents included in the analysis, 48.0% intended to retire early. Risk factors for early retirement included level of satisfaction with the specialty and its outlook, slanderous reviews, emergency room safety, health status, workload intensity, age, and hospital type. Intrinsic factors (i.e., slanderous reviews and satisfaction with the specialty and its outlook) had a stronger influence on early retirement than did extrinsic factors. Conclusions: To promote career longevity among EPs, it is vital to improve emergency room safety and workload intensity, to enhance medical professionalism through a stronger vision of emergency medicine, and to strengthen the patient-doctor relationship.

Affecting Factors on Depression among Female Labor Workers (생산직 여성근로자의 우울에 영향을 미치는 요인)

  • Jung, Eun-Sook;Shim, Moon-Sook
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.822-831
    • /
    • 2011
  • This study was to examine factors related to depression of female labor workers. In order to identify health promotion strategies and intervention program to reduce depression of female labor workers. The participants were 176 female workers of manufacturing industries. Data were collected using a structured questionnaire that consisted of personal characteristics, duty related, work related characteristics and depression. Using a SPSS/WIN 17.0 Program, descriptive statistics, $x^2$-test, ANOVA and Stepwise Multiple Regression procedures were employed. As follows on the results; In Correlation analysis, work intensity, work concentration, vibration, work difficulty and job stress were positively correlated with depression. In multiple Regression, work intensity and work difficulty were significantly explained by depression. Given the findings, Do nevertheless support the need to develop effective depression intervention programs to reduce factors which work related condition and depression.

Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory

  • Mohammadimehr, Mehdi;Mehrabi, Mojtaba;Hadizadeh, Hasan;Hadizadeh, Hossein
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.513-531
    • /
    • 2018
  • In this article, static, buckling and free vibration analyses of a sinusoidal micro composite beam reinforced by single-walled carbon nanotubes (SWCNTs) with considering temperature-dependent material properties embedded in an elastic medium in the presence of magnetic field under transverse uniform load are presented. This system is used at micro or sub micro scales to enhance the stiffness of micro composite structures such as bar, beam, plate and shell. In the present work, the size dependent effects based on surface stress effect and modified strain gradient theory (MSGT) are considered. The generalized rule of mixture is employed to predict temperature-dependent mechanical and thermal properties of micro composite beam. Then, the governing equations of motions are derived using Hamilton's principle and energy method. Numerical results are presented to investigate the influences of material length scale parameters, elastic foundation, composite fiber angle, magnetic intensity, temperature changes and carbon nanotubes volume fraction on the bending, buckling and free vibration behaviors of micro composite beam. There is a good agreement between the obtained results by this research and the literature results. The obtained results of this study demonstrate that the magnetic intensity, temperature changes, and two parameters elastic foundations have important effects on micro composite stiffness, while the magnetic field has greater effects on the bending, buckling and free vibration responses of micro composite beams. Moreover, it is shown that the effects of surface layers are important, and observed that the changes of carbon nanotubes volume fraction, beam length-to-thickness ratio and material length scale parameter have noticeable effects on the maximum deflection, critical buckling load and natural frequencies of micro composite beams.

Analysis of an HTS coil for large scale superconducting magnetic energy storage

  • Lee, Ji-Young;Lee, Seyeon;Choi, Kyeongdal;Park, Sang Ho;Hong, Gye-Won;Kim, Sung Soo;Lee, Ji-Kwang;Kim, Woo-Seok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.45-49
    • /
    • 2015
  • It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work.