• Title/Summary/Keyword: Stress corrosion crack growth

Search Result 89, Processing Time 0.026 seconds

The Influence of Marine Environmental Factor on the Corrosion Fatigue Fracture of SS41 Steel (SS41강의 부식피로파양에 미치는 해양환경인자의 영향)

  • 김원영;임종문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 1991
  • Corrosion fatigue test was performed by the use of plane bending fatigue tester in marine environment having various specific resistance from 25(natural sea water) to 5000.ohm.cm. It is in order to investigate the effects of marine environmental factor on the corrosion fatigue fracture of SS41 steel. The main results obtained are as follows; 1. The aspect ratio(b/a) of corner crack growing in natural sea water is lower than that in air. 2. The surface crack growth rate(da/dN) in marine environment is faster than that in air and da/dN delaies with the specific resistance increased. 3. The experimental constant m of paris rule [da/dN=C(${\delta}$K)$^m$] decrease with the specific resistance decreased and the effect of corrosion in proportion to the specific resistance is more sensitive than that of stress intensity factor range(${\delta}$K) under region II. 4. The accelerative factor(${\alpha}$) in marine environment is about 1.1-2.7 and .alpha. is increase under the low region of stress intensity factor range(${\delta}$K). 5. The electrode potential($E_0$) gets less noble potential with the specific resistance decreased.

  • PDF

Evaluation of the Stress Corrosion Cracking Behavior of Inconel G00 Alloy by Acoustic Emission (음향 방출에 의한 인코넬 600 합금의 응력 부식 균열 거동 평가)

  • Sung, Key-Yong;Kim, In-Sup;Yoon, Young-Ku
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.3
    • /
    • pp.174-183
    • /
    • 1996
  • Acoustic emission(AE) response during stress corrosion cracking(SCC) of Inconel 600 alloy has been monitored to study the AE detectability of crack generation and growth by comparing the crack behavior with AE parameters processed, and to evaluate the applicability as a nondestructive evaluation(AE) by measuring the minimum crack size detectable with AE. Variously heat-treated specimens were tensioned by constant extension rate test(CERT) in various extension rate to give rise to the different SCC behavior of specimens. The AE amplitude level generated from intergranular stress-corrosion cracking(IGSCC) is higher than those from ductile fracture and mechanical deformation, which means the AE amplitude can be a significant parameter for distinguishing the An source. AE can also provide the effective means to identify the transition from the small crack initiation and formation of dominant cracks to the dominant crack growth. Minimum crack size detectable with AE is supposed to be approximately 200 to $400{\mu}m$ in length and below $100{\mu}m$ in depth. The test results show that AE technique has a capability for detecting the early stage of IGSCC growth and the potential for practical application as a NDE.

  • PDF

Evaluation of Corrosion Fatigue Life of TMCP Steel Using the DCPD Method (DCPD 법을 이용한 TMCP 강의 부식피로수명 평가)

  • Park, Jin-Hyung;Bae, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.220-225
    • /
    • 2003
  • In order to develop a method of corrosion fatigue design and estimate reliability of TMCP steel using as the material of heavy industries and plants, its corrosion susceptibilities and corrosion fatigue life considering corrosion degradation were investigated. From the results, the corrosion characteristic of TMCP steel is very susceptible in 3.5wt.% NaCl solution. Its susceptibility was linearly increased with the solution temperature increase. The potential difference due to the crack growth behavior in $25^{\circ}C$, 3.5wt.% NaCl solution is very susceptible. And it was found that stress amplitude has a linear relationship with the critical potential. Therefore, it is expected that the corrosion fatigue life of TMCP steel can be nondestructively predicted using the DCPD method.

  • PDF

Corrosion fatigue crack growth behavior of 316LN stainless steel in high-temperature pressurized water

  • Zhang, Ziyu;Tan, Jibo;Wu, Xinqiang;Han, En-Hou;Ke, Wei
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2977-2981
    • /
    • 2021
  • Corrosion fatigue crack growth (FCG) behavior of 316LN stainless steel was investigated in high-temperature pressurized water at different temperatures, load ratios (R = Kmax/Kmin) and rise times (tR). The environmental assisted effect on FCG rate was observed when both the R and tR exceeded their critical values. The FCG rate showed a linear relation with stress intensity factor range (ΔK) in double logarithmic coordinate. The environmental assisted effect on FCG rate depended on the ΔK and quantitative relations were proposed. Possible mechanisms of environmental assisted FCG rate under different testing conditions are also discussed.

A Study on the Subcritical Crack Growth and the Life Prediction for Sintered Silicon Carbide (소결탄화규소의 완속균열성장 및 수명예측에 관한 연구)

  • 한원식;김영욱;이상호;장감용;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.4
    • /
    • pp.26-32
    • /
    • 1985
  • The subcritical crack growth of sintered SiC is investigated under various corrosive atmospheres such as distilled water Murakami solution and saturated KOH solution. The KI-V diagrams are obtained by the load relaxation method and incremental displacement rate method using the double torsion technique. The obtained fracture mechanics parameters (n) of sintered SiC are 79 in Murakami solution and 39 in saturated KOH solution. These data indicate that the subcritical crack growth of sintered SiC is taking place in these two conditions and the stress-corrosion cracking is suggested to be the mechanism. With these KI-V diagrams the life of sintered SiC in these conditions is predicted.

  • PDF

A Study on the Fracture Surface Growth Behavior of Steel used for Frame of Vehicles by Corrosion Fatigue (자동차 프레임용 강재의 부식피로에 의한 파면성장거동에 관한 연구)

  • Lee, Sang-Yoel;Im, Jong-Mun;Im, U-Jo;Lee, Jong-Rak
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.61-70
    • /
    • 1992
  • In this study, corrosion fatigue test of SAPH45 steel was performed by the use of plane bending fatigue tester in marine environment and investigated fracture surface growth behavior of base metal and heat affected zone corrosion fatigue. The main results obtained are as follows: 1) Fracture surface growth of heat affected zone (HAZ) is delayed more than that of base matel (BM), and they tend to faster in seawater than in air. 2) Corrosion sensitivity to corrosion fatigue life of HAZ is more susceptible than that of BM. 3)In the case of the corner crack by corrosion fatigue, the correlation between the propagation rate of fracture surface area(dA/dN) and stress intensity factor range(ΔK) for SAPH45 are applied to Paris rule as follows: dA/dN=C(ΔK) super(m) where m is the slope of the correlation, and is about 6.60-6.95 in air and about 6.33-6.41 in seawater respectively.

  • PDF

Prediction of stress intensity factor range for API 5L grade X65 steel by using GPR and MPMR

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Saravanan, M.;Gandhi, P.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.565-574
    • /
    • 2022
  • The infrastructures such as offshore, bridges, power plant, oil and gas piping and aircraft operate in a harsh environment during their service life. Structural integrity of engineering components used in these industries is paramount for the reliability and economics of operation. Two regression models based on the concept of Gaussian process regression (GPR) and Minimax probability machine regression (MPMR) were developed to predict stress intensity factor range (𝚫K). Both GPR and MPMR are in the frame work of probability distribution. Models were developed by using the fatigue crack growth data in MATLAB by appropriately modifying the tools. Fatigue crack growth experiments were carried out on Eccentrically-loaded Single Edge notch Tension (ESE(T)) specimens made of API 5L X65 Grade steel in inert and corrosive environments (2.0% and 3.5% NaCl). The experiments were carried out under constant amplitude cyclic loading with a stress ratio of 0.1 and 5.0 Hz frequency (inert environment), 0.5 Hz frequency (corrosive environment). Crack growth rate (da/dN) and stress intensity factor range (𝚫K) values were evaluated at incremental values of loading cycle and crack length. About 70 to 75% of the data has been used for training and the remaining for validation of the models. It is observed that the predicted SIF range is in good agreement with the corresponding experimental observations. Further, the performance of the models was assessed with several statistical parameters, namely, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Efficiency (E), Root Mean Square Error to Observation's Standard Deviation Ratio (RSR), Normalized Mean Bias Error (NMBE), Performance Index (ρ) and Variance Account Factor (VAF).

Investigation on Effect of Distance Between Two Collinear Circumferential Surface Cracks on Primary Water Stress Corrosion Crack Growth in Alloy 600TT Steam Generator Tubes (Alloy 600TT 증기발생기 전열관내 일렬 원주방향 표면 일차수응력 부식균열 성장에 미치는 균열 간격의 영향 고찰)

  • Heo, Eun-Ju;Kim, Jong-Sung;Jeon, Jun-Young;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.269-273
    • /
    • 2015
  • The study investigated the effect of the distance between two collinear circumferential surface cracks on the primary stress corrosion crack (PWSCC) growth in alloy 600TT steam generator tubes using a finite element damage analysis based on the PWSCC initiation model and macroscopic phenomenological damage mechanics approach. The damage analysis method was verified by comparing the results to the previous study results. The verified method was applied to collinear circumferential surface PWSCCs. As a result, it was found that the collinear cracks showed earlier coalescence and penetration times than the a single crack, and the times increased with the distance. In addition, it is expected that penetration may occur before coalescence of two cracks if they are more than a specific distance apart.

A Study on the Fatigue Crack Growth Characteristics of the Welded Part According to the Welding Method of Ship Structural Steel (선체구조용강의 용접방법에 따른 용접부의 피로균열전파특성 연구)

  • Park, Kyeong-Dong;Ki, Woo-Tae;Lee, Ju-Yeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.385-393
    • /
    • 2007
  • The strength evaluation of the most weakest junction part is required for the safety design of all structures. Most of all. in order to enhance the reliability and safety of the welding part. whose use is the highest, it is very important to establish the efficient structure manufacturing technology by studying and investigating the evaluation of fatigue strength in various environments. This study analyzed the relations of da/dN, and th according to the welding methods of SMAW, FCAW, and SAW. In the stage II. the value of stress intensity factor range was the highest in SMAW welding method of stress ration R=0.1, and appeared under the sequence of FCAW and SAW and as the completion section of stress intensity factor was low, threshold stress intensity factor was lowly formed in da/dN - The fatigue life of each welding method is sensitively worked in high stress ratio. judging from the fact that the width of life reduction increases in the high stress ratio zone compared to the width of life reduction in the low stress ratio zone. In the fatigue limit of welding methods before corrosion. the welding of SMAW and FCAW shows the same fatigue limit compared to Base metal, and SAW holds the lowest fatigue limit value.