• Title/Summary/Keyword: Stress corrosion

Search Result 908, Processing Time 0.025 seconds

A Study on the RRA(Retrogression and Reaging) treatment of 7050 Al alloy (7050 Al 합금의 RRA 처리에 관한 연구)

  • Choi, Joong-Whoan;Kim, Jang-Ryang;Lee, Sang-Lae;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.493-498
    • /
    • 2000
  • The effects of RRA treatment on the microstructures and mechanical properties of 7050 Al alloy were investigated by differential scanning calolimetry, transmission electron microscopy, microhardness measurement and electrical conductivity. The hardness of 2nd-step aged specimen at $175^{\circ}C$ was decreased to mimimum value and increased to a peak hardness, and then re-decreased with retrogression treatment. It was found that the hardness of 2nd-step aged specimen was further increased by 3rd step aging treatment($120^{\circ}C$x24h). The initial decrease in hardness during 2nd-step aging was due to the partial dissolution of pre-existing GP zone, the major precipitation hardening phase at T6 condition. It was confirmed that the major precipitation hardening phase at 3rd-step aging was GP zone and η' phase. The electrical conductivity increased continually through 2nd-step and 3rd-step aging treatment. It was conclude that the optium 2nd-step aging condition was at $175^{\circ}C$ for 50min by considering the hardness and electrical conductivity.

  • PDF

Numerical analysis for deformation characteristics under the freezing and bursting of Al pipe (알루미늄 관의 동파 거동특성에 관한 수치적 연구)

  • Choi, Seung-Hyun;Lee, Dong-Won;Ko, Young-Bae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4763-4768
    • /
    • 2014
  • Recently, aluminum pipes have been used instead of steel pipes for open and shut machines in vinyl housing because of its corrosion-resistance and light weight. In particular, the light weight is very useful for fitting and removal by human resources. On the other hand, an aluminum pipe is weak in winter because aluminum has a larger thermal expansion coefficient than steel. This study examined the freezing and bursting of aluminum pipes by numerical analysis. The mechanical-thermal deformation characteristics were analyzed under the condition of ice volumetric expansion in aluminum pipes reaching 50%. From numerical analysis, large stresses above the yield stress occurred in aluminum pipe after ice expanded in the net diameter immediately. In addition, the freezing and bursting of aluminum pipes was predicted around an ice volumetric expansion of 6 - 7% because the thickness of the aluminum pipe reached an aluminum elongation ratio of 17%. Therefore, it is recommended that aluminum pipes be sealed perfectly to prevent water flow in the pipe. These results suggest that it is very difficult to prevent freezing and bursting of aluminum pipes by water freezing in the pipe.

An Experimental Study for Flexural Characteristic of Concrete Beam Reinforced with FRP Rebar under Static and Fatigue (FRP 보강근을 사용한 콘크리트 휨부재의 정적 및 피로특성에 대한 실험적 연구)

  • Sim, Jong-Sung;Park, Sung-Jae;Kang, Tae-Sung;Kwon, Dong-Wook;Lee, Ki-Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.313-316
    • /
    • 2008
  • Corrosion of steel in the reinforced concrete structures is one of the main reason of degradation. It causes that lifetime of structures is shortened and maintenance cost is increased. And it also causes degradation of structures like bridges which are under repeated load. So, many research have been performed about FRP rebar. But there are few research about FRP rebar under fatigue. This study is to examine flexural characteristic of concrete beam reinforced with FRP(CFRP, GFRP) rebar under static and fatigue for considering the application. The specimens that used in this study are designed by ACI 440.1R-06 and reinforced with CFRP(CR) or GFRP(GR) overly. In the result of static bending test, all specimens were failed at compression phase. In fatigue test, the fatigue stress level was 60%, 70% or 80% of the static bending strength. Most of the specimens seemed to be compressive failure, but CR-60 and CR-70 specimens were failed with rupturing of tension bar.

  • PDF

Probabilistic Service Life Analysis of GGBFS Concrete Exposed to Carbonation Cold Joint and Loading Conditions (탄산화에 노출된 GGBFS 콘크리트의 콜드 조인트 및 하중 재하를 고려한 확률론적 내구수명 해석)

  • Kim, Tae-Hoon;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.39-46
    • /
    • 2020
  • Carbonation is a deterioration which degrades structural and material performance by permitting CO2 and corrosion of embedded steel. Service life evaluation through deterministic method is conventional, however the researches with probabilistic approach on service life considering loading and cold joint effect on carbonation have been performed very limitedly. In this study, probabilistic service life evaluation was carried out through MCS (Monte Carlo Simulation) which adopted random variables such as cover depth, CO2 diffusion coefficient, exterior CO2 concentration, and internal carbonatable materials. Probabilistic service life was derived by changing mean value and COV (Coefficient of variation) from 100 % to 300 % and 0.1 ~ 0.2, respectively. From the analysis, maximum reduction ratio (47.7%) and minimum reduction ratio (11.4%) of service life were obtained in cover depth and diffusion coefficient, respectively. In the loading conditions of 30~60% for compressive and tensile stress, GGBFS concrete was effective to reduce cold joint effect on carbonation. In the tensile condition, service life decreased linearly regardless of material types. Additionally service life rapidly decreased due to micro crack propagation in the all cases when 60% loading was considered in compressive condition.

Characterization of Stress Corrosion Cracking at the Welded Region of High Strength Steel using Acoustic Emission Method (음향방출법에 의한 고 장력강 용접부의 부식손상 특성 평가)

  • Na, Eui-Gyun;Kim, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.212-219
    • /
    • 2003
  • This study is to evaluate the characteristics of SCC at the welded region of high strength steel using acoustic emission(AE) method. Specimens were loaded by a slow strain rate method in synthetic seawater and the damage process was monitored simultaneously by AE method. Corrosive environment was controlled using the potentiostat, in which -0.8V and -1.1V were applied to the specimens. In the case of one-pass weldment subjected to -0.8V, much more AE counts were detected compared with the PWHT specimen. It was verified through the cumulative counts that coalescence of micro cracks and cracks for the one pass weldment with -0.8V were mostly detected. In case of the one pass weldment subjected to -1.1V, time to failure became shorter and AE counts were produced considerably as compared with that of the two pass weldment. It was shown that AE counts and range of AE amplitude have close relations with the number and size as well as width of the cracks which were formed during the SCC.

Development of Remote Reld Testing Technique for Moisture Separator & Reheater Tubes in Nuclear Power Plants (원자력발전소 습분분리재열기 튜브 원격장검사 기술 개발)

  • Nam, Min-Woo;Lee, Hee-Jong;Kim, Cheol-Gi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.339-345
    • /
    • 2008
  • The heat exchanger tube in nuclear power plants is mainly fabricated from nonferromagnetic material such as a copper, titanium, and inconel alloy, but the moisture separator & reheater tube in the turbine system is fabricated from ferromagnetic material such as a carbon steel or ferrite stainless steel which has a good mechanical properties in harsh environments of high pressure and temperature. Especially, the moisture separator & reheater tubes, which use steam as a heat transfer media, typically employ a tubing with integral fins to furnish higher heat transfer rates. The ferromagnetic tube typically shows superior properties in high pressure and temperature environments than a nonferromagnetic material, but can make a trouble during the normal operation of power plants because the ferrous tube has service-induced damage forms including a steam cutting, erosion, mechanical wear, stress corrosion cracking, etc. Therefore, nondestructive examination is periodically performed to evaluate the tube integrity. Now, the remote field testing(RFT) technique is one of the solution for examination of ferromagnetic tube because the conventional eddy current technique typically can not be applied to ferromagnetic tube such as a ferrite stainless steel due to the high electrical permeability of ferrous tube. In this study, we have designed RFT probes, calibration standards, artificial flaw specimen, and probe pusher-puller necessary for field application, and have successfully carry out RFT examination of the moisture separator & reheater tube of nuclear power plants.

Gas Injection Experiment to Investigate Gas Migration in Saturated Compacted Bentonite (포화 압축 벤토나이트 내 기체 이동 현상 관측을 위한 기체 주입 시험)

  • Jung-Tae Kim;Changsoo Lee;Minhyeong Lee;Jin-Seop Kim;Sinhang Kang
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.89-103
    • /
    • 2024
  • In the disposal environment, gases can be generated at the interface between canister and buffer due to various factors such as anaerobic corrosion, radiolysis, and microbial degradation. If the gas generation rate exceeds the diffusion rate, the gas within the buffer may compress, resulting in physical damage to the buffer due to the increased pore pressure. In particular, the rapid movement of gases, known as gas breakthroughs, through the dilatancy pathway formed during this process may lead to releasing radionuclide. Therefore, understanding these gas generation and movement mechanism is essential for the safety assessment of the disposal systems. In this study, an experimental apparatus for investigating gas migration within buffer was constructed based on a literature review. Subsequently, a gas injection experiment was conducted on a compacted bentonite block made of Bentonile WRK (Clariant Ltd.) powder. The results clearly demonstrated a sharp increase in stress and pressure typically observed at the onset of gas breakthrough within the buffer. Additionally, the range of stresses induced by the swelling phenomenon of the buffer, was 4.7 to 9.1 MPa. The apparent gas entry pressure was determined to be approximately 7.8 MPa. The equipment established in this study is expected to be utilized for various experiments aimed at building a database on the initial properties of buffer and the conditions during gas injection, contributing to understanding the gas migration phenomena.

Stellite bearings for liquid Zn-/Al-Systems with advanced chemical and physical properties by Mechanical Alloying and Standard-PM-Route

  • Zoz, H.;Benz, H.U.;Huettebraeucker, K.;Furken, L.;Ren, H.;Reichardt, R.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2000.04a
    • /
    • pp.9-10
    • /
    • 2000
  • An important business-field of world-wide steel-industry is the coating of thin metal-sheets with zinc, zinc-aluminum and aluminum based materials. These products mostly go into automotive industry. in particular for the car-body. into building and construction industry as well as household appliances. Due to mass-production, the processing is done in large continuously operating plants where the mostly cold-rolled metal-strip as the substrate is handled in coils up to 40 tons unwind before and rolled up again after passing the processing plant which includes cleaning, annealing, hot-dip galvanizing / aluminizing and chemical treatment. In the liquid Zn, Zn-AI, AI-Zn and AI-Si bathes a combined action of corrosion and wear under high temperature and high stress onto the transfer components (rolls) accounts for major economic losses. Most critical here are the bearing systems of these rolls operating in the liquid system. Rolls in liquid system can not be avoided as they are needed to transfer the steel-strip into and out of the crucible. Since several years, ceramic roller bearings are tested here [1.2], however, in particular due to uncontrollable Slag-impurities within the hot bath [3], slide bearings are still expected to be of a higher potential [4]. The today's state of the art is the application of slide bearings based on Stellite\ulcorneragainst Stellite which is in general a 50-60 wt% Co-matrix with incorporated Cr- and W-carbides and other composites. Indeed Stellite is used as the bearing-material as of it's chemical properties (does not go into solution), the physical properties in particular with poor lubricating properties are not satisfying at all. To increase the Sliding behavior in the bearing system, about 0.15-0.2 wt% of lead has been added into the hot-bath in the past. Due to environmental regulations. this had to be reduced dramatically_ This together with the heavily increasing production rates expressed by increased velocity of the substrate-steel-band up to 200 m/min and increased tractate power up to 10 tons in modern plants. leads to life times of the bearings of a few up to several days only. To improve this situation. the Mechanical Alloying (MA) TeChnique [5.6.7.8] is used to prOduce advanced Stellite-based bearing materials. A lubricating phase is introduced into Stellite-powder-material by MA, the composite-powder-particles are coated by High Energy Milling (HEM) in order to produce bearing-bushes of approximately 12 kg by Sintering, Liquid Phase Sintering (LPS) and Hot Isostatic Pressing (HIP). The chemical and physical behavior of samples as well as the bearing systems in the hot galvanizing / aluminizing plant are discussed. DependenCies like lubricant material and composite, LPS-binder and composite, particle shape and PM-route with respect to achievable density. (temperature--) shock-reSistibility and corrosive-wear behavior will be described. The materials are characterized by particle size analysis (laser diffraction), scanning electron microscopy and X-ray diffraction. corrosive-wear behavior is determined using a special cylinder-in-bush apparatus (CIBA) as well as field-test in real production condition. Part I of this work describes the initial testing phase where different sample materials are produced, characterized, consolidated and tested in the CIBA under a common AI-Zn-system. The results are discussed and the material-system for the large components to be produced for the field test in real production condition is decided. Outlook: Part II of this work will describe the field test in a hot-dip-galvanizing/aluminizing plant of the mechanically alloyed bearing bushes under aluminum-rich liquid metal. Alter testing, the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed. Part III of this project will describe a second initial testing phase where the won results of part 1+11 will be transferred to the AI-Si system. Part IV of this project will describe the field test in a hot-dip-aluminizing plant of the mechanically alloyed bearing bushes under aluminum liquid metal. After testing. the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed.

  • PDF