• Title/Summary/Keyword: Stress concentration analysis

Search Result 976, Processing Time 0.032 seconds

Finite Element Analysis of the Stress Concentrations for Butt Welded Joints (유한요소 해석에 의한 맞대기 용접 이음의 응력집중에 과한 연구)

  • 구병춘;최병일;김재훈
    • Journal of Welding and Joining
    • /
    • v.22 no.4
    • /
    • pp.59-64
    • /
    • 2004
  • The purpose of this study is to investigate the influence of weld bead profiles on stress concentration factors of double V groove butt-welded joints. The influence of three parameters such as toe radii, flank angles and bead heights on the stress concentration factors is studied by finite element analysis. It is shown that the three parameters have similar effects on the stress concentration factors. Finally a formula to estimate the stress concentration factors considering the three parameters and others is proposed and estimated results are compared with the results obtained by finite element analysis.

Analysis & Comparison of Stress Concentration Factors of 2D Plate with Single/Multiple Hole (2차원 평판 단일/다중 구멍에 대한 응력 집중 계수 해석 및 비교)

  • Lee, SangGu;Gong, DuHyun;Sim, JiSoo;Shin, SangJoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.209-216
    • /
    • 2016
  • Holes of rivets, bolts and nuts may cause stress concentration on the plates used in aircraft, ship and other structures. Excessive stress concentration may lead to severe breakage of the plates. Thus, accurate analysis of the stress concentration at the design stage will be important. In this paper, accuracy of EDISON program in stress concentration analysis was examined. By changing hole size on a narrow plate, the change of the stress concentration factor(K) was investigated. Additionally, the same experiment was conducted about series of holes on plate to investigate the interaction between adjacent holes. Then, these numerical results were compared with the analytic prediction. EDISON program showed very high accuracy about stress concentration, since the numerical results was correlated well with the analytic prediction.

  • PDF

Estimation of stress concentration factor in bolt jointed structure with variable preload (체결력에 따른 볼트 결합구조물의 응력집중계수 평가)

  • 송준혁
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.298-303
    • /
    • 1998
  • Most of mechanical structures are combined of substructures such as beam and/or plates. There are few system with unibody structures but are not a few systems with united body structures. Generally the dynamic analysis of whole structures is perform ed under alternating load. However, the analysis of each joint area is more important than others for zero severity. This paper presents the results of analysis of concentration stress in bolt jointed structure with variable preload. At frist, a static vibration test was performed to find out a nominal stress of bolt joint ed plates from the relationship between natural frequency and nominal stress. Then a concentration stress was computed at contact point between bolt and plate in the structure. It is believed that the proposed method has promising implications for safer design with fatigue quality index of stress concentration factor and has merit for cost down and saving time at the beginning of vehicle development.

  • PDF

An Analysis of stress concentration and crack in injection mold by cavity pressure (사출금형에서 내압에 의한 응력집중 및 크랙 분석)

  • Choi, Sung-Hyun;Hang, Su-Jin;Choi, Sung-Ju;Lyu, Min-Young
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.159-162
    • /
    • 2008
  • High pressure is involved during injection molding operation specially packing phase. Cracks in the mold are often occurred by high cavity pressure. In this study, structural analysis of mold has been performed using commercial softwares, Abaqus and Ansys, to investigate cause of crack in the injection mold. Structural analysis contains four cases: stress distribution according to the cavity pressure, stress concentration according to the boundary conditions, stress concentration for inter-locking design of mold, and stress concentration for distributed cavity pressure. Through this study it was observed that the locations of stress concentrations were coincident with locations of crack. Robust mold design is being required to withstand high cavity pressure.

  • PDF

A Study on Stress Analysis of Orthotropic Composite Cylindrical Shells with a Circular or an Elliptical Cutout

  • Ryu, Chung-Hyun;Lee, Young-Shin;Park, Myoung-Hwan;Kim, Young-Wann
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.808-813
    • /
    • 2004
  • The stress analysis on orthotropic composite cylindrical shells with one circular or one elliptical cutout subjected to an axial force is carried out by using an analytical and experimental method. The composite cylindrical shell governing equation of the Donnell's type is applied to this study and all results are presented by the stress concentration factor. The stress concentration factor is defined as the ratio of the stress on the region around a cutout to the nominal stress of the shell. The stress concentration factor is classified into the circumferential stress concentration factors and the radial stress concentration factors due to the cylindrical coordinate of which the origin is the center of a cutout. The considered loading condition is only axial tension loading condition. In this study, thus, the maximum stress is induced on perpendicular region against axial direction, on the coordinate. Various cutout sizes are expressed using the radius ratio, (equation omitted), which is the radius of a cutout over one of the cylindrical shell. Experimental results are obtained using strain gages, which are attached around a cutout of the cylindrical shell. As the result from this study, the stress concentration around a cutout can be predicted by using the analytical method for an orthotropic composite cylindrical shell having a circular or an elliptical cutout.

Photoelastic Stress Analysis of the Abutment Surrounding Tissue According to Shape of the Proximal Plate of the RPI Clasp (압축하중시 RPI clasp의 3가지 다른 proximal plate 형태에 따른 지대치 주위조직의 광탄성 응력 분석)

  • Choi, Jung Soo;Kim, Busob
    • Journal of Technologic Dentistry
    • /
    • v.34 no.4
    • /
    • pp.473-482
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the stress distribution of the surrounding tissues according to 3 proximal plate types of the RPI clasp. Methods: The removeable partial denture which mandibular right and left second premolars and mandibular molars were lost was attached to a three dimensional photo elastic epoxy resin model. Then 120N of vertical load was applied. After 3-dimensional photoelastic stress analysis was used to record the isochromatic fringe patterns. Results: Kratochvil type guiding plane exhibited little uniform stress distribution on load center and alveolar ridge, but higher stress concentration on buccal surface of second premolar. Krol type guiding plane exhibited the stress concentration on the front of load center and relatively higher stress concentration on buccal surface of first premolar. However, this type had no effect on canine. Researcher type guiding plane showed the stress concentration on second premolar and molar, but the little stress distribution on first premolar. Conclusion: In all types, excessive stress concentration was appeared and three types were not significant different.

Estimation of Dynamic Stress Concentration Factor by Infrared Thermography Stress Analysis (적외선 열화상 응력측정법에 의한 동적 응력집중계수 예측)

  • Choi, Man-Yong;Kang, Ki-Soo;Park, Jeong-Hak;Ahn, Byung-Wook;Kim, Koung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.77-81
    • /
    • 2008
  • Structural components subjected to high frequency vibrations, such as those used in vibrating parts of gas turbine engines, are usually required to avoid resonance frequencies. Generally, the operating frequency is designed at more than resonance frequencies. When a vibrating structure starts or stops, the structure has to pass through a resonance frequency, which results in large stress concentration. This paper presents the transient thermoelastic stress analysis of vibrating cantilever beam using infrared thermography and finite element method (FEM). In FEM, stress concentration factor at the 2nd resonance vibration mode is calculated by the mode superposition method of ANSYS. In experiment, stress distributions are investigated with infrared thermography and dynamic stress concentration factor is estimated. Experimental result is agreed with FEM result within 10.6%. The advantage of this technique is a better immunity to contact problem and geometric limitation in stress analysis of small or micro structures.

A Numerical Analysis for the Influential Factors on the Stress Concentration Ratio (모래다짐말뚝지반의 응력분담비에 영향을 미치는 인자에 대한 해석적 연구)

  • Choi, Hyo-Won;Shin, Hyun-Young;Yoo, Han-Kyu;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.966-973
    • /
    • 2005
  • The stress concentration ratio in accordance with area replacement ratios were considered as core elements of design. However, the stress concentration ratio will be vary depends on progress of consolidation in clay ground. And, since it is not sure to know the affecting factors accurately, the value is decided based on field experiences. To use SCP method more effective and correspond to soil improvement, the decision on proper area replacement ratio through the exact stress concentration ratio is very important. Accordingly, a numerical analysis on influence of various factors that needed to make rational designing guide for decision of proper area replacement ratio to stress concentration ratio was executed in this study.

  • PDF

A Study on the Stress Concentration Phenomenon of a Dissimilar Joints (이종재 접합부에서의 응력집중현상에 관한 연구)

  • 조상명;김영식
    • Journal of Welding and Joining
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 1992
  • In this study, the stress concentration phenomenon for the dissimilar joints(ceramic-metal) bonded by thermal treating using a soft-insert metal(copper) was investigated with the aid of FEM(finite element method) under the load condition of uniform tension. The analysis was carried out by the supposing that stress states are plane stress or plane strain and elastic or elastic-plastic. And the Von Mises yield criterion and the incremental theory as plastic flow were adopted in this analysis. As the summarized results obtained, the stress concentration phenomenon was severer as the soft insert metal was thicker, in plane strain than in plane stress and in elastic-plastic state than in elastic state. Furthermore, the inducing mechanism of stress concentration was well expressed by the constraint forces(Fc) generated between the soft and the hard material.

  • PDF

Effect of Cutout Orientation on Stress Concentration of Perforated Plates with Various Cutouts and Bluntness

  • Woo, Jin-Ho;Na, Won-Bae
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.95-101
    • /
    • 2011
  • Perforated plates with cutouts (or holes) are widely used in structural members. These cutouts provide stress concentration in plates. Extensive studies have been carried out on stress concentration in perforated plates, which consider cutout shapes, boundary conditions, bluntness of cutouts, and more. This study presents stress concentration analyses of perforated plates with not only various cutouts and bluntness but also different cutout orientations. Especially, the effect of cutout orientation on stress concentration is emphasized since structural members have become more complicated recently. To obtain stress concentration patterns, a finite element program, ANSYS, is used. For the designated goal, three parameters are considered as follows: the shapes of polygonal cutouts (circle, triangle, and square), bluntness (a counter measure of radius ratio, r/R), and rotation of cutouts (${\theta}$). From the analyses, it is shown that, in general, as bluntness increases, the stress concentration increases, regardless of the shape and rotation. A more important finding is that the stress concentration increases as the cutouts become more oriented from the baseline, which is the positive horizontal axis (+x). This fact demonstrates that the orientation is also a relatively significant design factor to reduce stress concentration. In detail, in the case of the triangle cutout, orienting one side of the triangle cutout to be perpendicular to the applied tensile forces is preferable. Similarly, in the case of the square cutout, it is more advantageous to orient two sides of square cutout to be perpendicular to the applied tensile force. Therefore, at the design stage, determining the direction of a major tensile force is required. Then, by aligning those polygon cutouts properly, we can reduce stress concentration.