• Title/Summary/Keyword: Stress Physiology

검색결과 737건 처리시간 0.036초

Change in Adiponectin and Oxidative Stress after Modifiable Lifestyle Interventions in Breast Cancer Cases

  • Karimi, Niloofar;Roshan, Valiollah Dabidi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.2845-2850
    • /
    • 2013
  • Background: Breast cancer is one of the most frequent diseases in women today. Little information exists on modifiable lifestyle factors including effects of ginger supplements (as an anti-oxidant and anti-inflammatory herbal) and water-based exercise on biomarkers related to oxidative stress such as malondialdehyde (MDA), nitric oxide (NO) and glutathione peroxidase (GPx) and adiponectin in obese women with breast cancer. The aim of this study was to determine the single and concomitant effect of 6-wks water-based exercise and oral ginger supplement on the aforesaid markers in obese women with breast cancer. Materials and Methods: Forty women diagnosed with breast cancer ($48{\pm}5.4$ years, $76{\pm}9$ kg, fat mass $41.8{\pm}4%$), volunteered to participate in the study. Subjects were randomly assigned into four groups; placebo, water-based exercise, ginger supplement and water-based exercise+ginger supplement groups. Subjects in the ginger supplement group and the water-based exercise+ginger supplement group orally received 4 capsules (each capsule contained 750 mg), 7 days a week for 6 weeks. The water-based exercise program featured progressive increase in intensity and time, ranging from 50% to 75% of heart rate reserve, in a pool with 15 meters width, 4 times a week for 6 weeks. Fasting blood samples were collected at pre-test and post-test time points. Results: The ginger supplementation and or the water-base exercise resulted in an increase of adiponectin, NO and GPx and reduction MDA, as compared to pre-test values. However, the combined intervention (water-base exercise and ginger supplement) group showed significantly a far better effect on the biomarkers related to oxidative stress and adiponectin levels, as compared to the waterbase exercise or ginger supplement alone groups and the age-matched placebo group. Conclusions: Our results revealed that water-base exercise is a non-drug therapeutic strategy to reduce systemic stress in obese women suffering from breast cancer. Further, ginger supplementation alone or in combination with training, also play an important role in the pathogenesis of oxidative stress in obese women diagnosed with breast cancer.

인삼의 수분생리 III. 토양수분, 생리장해, 병해충과 품질 (Water Physiology of Panax ginseng III. Soil moisture, physiological disorder, diseases, insects and quality)

  • 박훈
    • Journal of Ginseng Research
    • /
    • 제6권2호
    • /
    • pp.168-203
    • /
    • 1982
  • Effects of soil moisture on growth of Panax ginseng, of various factors on soil moisture, and of moisture on nutrition, quality, physiological disorder, diseases and insect damage were reviewed. Optimum soil moisture was 32% of field capacity with sand during seed dehiscence, and 55-65% for plant growth in the fields. Optimum soil moisture content for growth was higher for aerial part than for root and higher for width than for length. Soil factors for high yield in ginseng fields appeared to be organic matter, silt, clay, agreggation, and porosity that contributed more to water holding capacity than rain fall did, and to drainage. Most practices for field preparation aimed to control soil moisture rather than nutrients and pathogens. Light intensity was a primary factor affecting soil moisture content through evaporation. Straw mulching was best for the increase of soil moisture especially in rear side of bed. Translocation to aerial part was inhibited by water stress in order of Mg, p, Ca, N an Mn while accelerated in order of Fe, Zn and K. Most physiological disorders(leaf yellowing, early leaf fall, papery leaf spot, root reddening, root scab, root cracking, root dormancy) and quality factors were mainly related to water stress. Most critical diseases were due to stress, excess and variation of soil water, and heavy rain fall. The role of water should be studied in multidiciplinary, especially in physiology and pathology.

  • PDF

베타아밀로이드로 유도된 신경세포사멸에 대한 지황(地黃) 및 지황식초(地黃食醋)의 보호효과 (Protective Effects of Rehmannia Glutinosa Extract and Rehmannia Glutinosa Vinegar against b-amyloid-induced Neuronal Cell Death)

  • 송효인;김광중
    • 동의생리병리학회지
    • /
    • 제21권1호
    • /
    • pp.190-198
    • /
    • 2007
  • Alzheimer's disease, a representative neurodegenerative disorder, is characterized by the presence of senile plaques and neurofibrillary tangles accompanied by neuronal damages. b-Amyloid peptide is considered to be responsible for the formation of senile plagues that accumulate in the brains of patients with Alzheimer's disease. There has been compelling evidence supporting that b-amyloid-induced cytotoxicity is mediated through generation of reactive oxygen species. In this study, we have investigated the possible protective effect of Rehmannia glutihosaagainst b-amyloid-induced oxidative ceil death in cultured human neuroblastoma SH-SY5Y cells. SH-SY5Y cells treated with b-amyloid underwent apoptotic death as determined by morphological features and positive in situterminal end-labeling (TUNEL staining). Rehmannia glutinosawater extract, wine, and vinegar pretreatments attenuated b-amyloid-induced cytotoxicity and apoptosis. Rehmannia glutinosa vinegar exhibited maximum protective effect by increasing the expression of anti-apoptotic protein, Bcl-2. in addition to oxidative stress, b-amyloid-treatment caused nitrosative stress via marked increase in the levels of nitric oxide, which was effectively blocked by Rehmannia glutinosa. To further explore the possible molecular mechanisms underlying the protective effect of Rehmannia glutinosa, we assessed the mRNA expression of cellular antioxidant enzymes. Treatment of Rehmannia glutinosa vinegar led to up-regulation of heme oxygemase-1 and catalase. These results suggest that Rehmannia glutinosa could modulate oxidative neuronal cell death caused by b-amyloid and may have preventive or therapeutic potential in the management of Alzheimer's disease. Particularly, Rehmannia glutinosa vinegar can augment cellular antioxidant capacity, there by exhibiting higher neuroprotective potential.

Pretreatment with Lycopene Attenuates Oxidative Stress-Induced Apoptosis in Human Mesenchymal Stem Cells

  • Kim, Ji Yong;Lee, Jai-Sung;Han, Yong-Seok;Lee, Jun Hee;Bae, Inhyu;Yoon, Yeo Min;Kwon, Sang Mo;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • 제23권6호
    • /
    • pp.517-524
    • /
    • 2015
  • Human mesenchymal stem cells (MSCs) have been used in cell-based therapy to promote revascularization after peripheral or myocardial ischemia. High levels of reactive oxygen species (ROS) are involved in the senescence and apoptosis of MSCs, causing defective neovascularization. Here, we examined the effect of the natural antioxidant lycopene on oxidative stress-induced apoptosis in MSCs. Although $H_2O_2$ ($200{\mu}M$) increased intracellular ROS levels in human MSCs, lycopene ($10{\mu}M$) pretreatment suppressed $H_2O_2$-induced ROS generation and increased survival. $H_2O_2$-induced ROS increased the levels of phosphorylated p38 mitogen activated protein kinase (MAPK), Jun-N-terminal kinase (JNK), ataxia telangiectasia mutated (ATM), and p53, which were inhibited by lycopene pretreatment. Furthermore, lycopene pretreatment decreased the expression of cleaved poly (ADP ribose) polymerase-1 (PARP-1) and caspase-3 and increased the expression of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax), which were induced by $H_2O_2$ treatment. Moreover, lycopene significantly increased manganese superoxide dismutase (MnSOD) expression and decreased cellular ROS levels via the PI3K-Akt pathway. Our findings show that lycopene pretreatment prevents ischemic injury by suppressing apoptosis-associated signal pathway and enhancing anti-oxidant protein, suggesting that lycopene could be developed as a beneficial broad-spectrum agent for the successful MSC transplantation in ischemic diseases.

Resveratrol attenuates 4-hydroxy-2-hexenal-induced oxidative stress in mouse cortical collecting duct cells

  • Bae, Eun Hui;Joo, Soo Yeon;Ma, Seong Kwon;Lee, JongUn;Kim, Soo Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권3호
    • /
    • pp.229-236
    • /
    • 2016
  • Resveratrol (RSV) may provide numerous protective effects against chronic inflammatory diseases. Due to local hypoxia and hypertonicity, the renal medulla is subject to extreme oxidative stress, and aldehyde products formed during lipid peroxidation, such as 4-hydroxy-2-hexenal (HHE), might be responsible for tubular injury. This study aimed at investigating the effects of RSV on renal and its signaling mechanisms. While HHE treatment resulted in decreased expression of Sirt1, AQP2, and nuclear factor erythroid 2-related factor 2 (Nrf2), mouse cortical collecting duct cells (M1) cells treated with HHE exhibited increased activation of p38 MAPK, extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and increased expression of NOX4, $p47^{phox}$, Kelch ECH associating protein 1 (Keap1) and COX2. HHE treatment also induced $NF-{\kappa}B$ activation by promoting $I{\kappa}B-{\alpha}$ degradation. Meanwhile, the observed increases in nuclear $NF-{\kappa}B$, NOX4, $p47^{phox}$, and COX2 expression were attenuated by treatment with Bay 117082, N-acetyl-l-cysteine (NAC), or RSV. Our findings indicate that RSV inhibits the expression of inflammatory proteins and the production of reactive oxygen species in M1 cells by inhibiting $NF-{\kappa}B$ activation.

PEP-1-paraoxonase 1 fusion protein prevents cytokine-induced cell destruction and impaired insulin secretion in rat insulinoma cells

  • Lee, Su Jin;Kang, Hyung Kyung;Choi, Yeon Joo;Eum, Won Sik;Park, Jinseu;Choi, Soo Young;Kwon, Hyeok Yil
    • BMB Reports
    • /
    • 제51권10호
    • /
    • pp.538-543
    • /
    • 2018
  • Pancreatic beta cell destruction and dysfunction induced by cytokines is a major cause of type 1 diabetes. Paraoxonase 1 (PON1), an arylesterase with antioxidant activity, has been shown to play an important role in preventing the development of diabetes in transgenic mice. However, no studies have examined the anti-diabetic effect of PON1 delivered to beta cells using protein transduction. In this study, we expressed the cell-permeable PON1 fused with PEP-1 protein transduction domain (PEP-1-PON1) to investigate whether transduced PEP-1-PON1 protects beta cells against cytokine-induced cytotoxicity. PEP-1-PON1 was effectively delivered to INS-1 cells and prevented cytokine-induced cell destruction in a dose-dependent manner. Transduced PEP-1-PON1 significantly reduced the levels of reactive oxygen species (ROS) and nitric oxide (NO), DNA fragmentation, and expression of inflammatory mediators, endoplasmic reticulum (ER) stress proteins, and apoptosis-related proteins in cytokine-treated cells. Moreover, transduced PEP-1-PON1 restored the decrease in basal and glucose-stimulated insulin secretion induced by cytokines. These data indicate that PEP-1-PON1 protects beta cells from cytokine-induced cytotoxicity by alleviating oxidative/nitrosative stress, ER stress, and inflammation. Thus, PEP-1-mediated PON1 transduction might be an effective method to reduce the extent of destruction and dysfunction of pancreatic beta cells in autoimmune diabetes.

폐 대식세포주에서 벤젠에 의한 세포 사멸 효과와 산화성 스트레스 관련성 (Relationship between Cell Death and Oxidative Stress in the effect of benzene in Cultured Lung Epithelial Cells)

  • 임재청;김종춘;박수현
    • 한국환경농학회지
    • /
    • 제29권4호
    • /
    • pp.421-426
    • /
    • 2010
  • 벤젠은 농약 노출 및 새집 증후군시에 나타나는 중요한 물질로 천식 및 알러지 등의 호흡 질환을 일으키는 물질로 알려져 있으나 폐 상피세포에 대한 자세한 효과는 알려져 있지 않고 있다. 본 실험에서는 폐 상피세포인 A549 세포를 이용하여 벤젠에 대한 효과를 알아보았다. 실험 결과 벤젠은 세포 생존율을 감소 시켰으며, 이러한 반응은 항산화제인 vitamin C 및 NAC 처리 시 차단되었다. 실제로 벤젠 처리시 산화성 스트레스 지표인 lipid peroxide 형성이 증가하였으며 이들 반응 역시 항산화제들에 의해 차단되었다. 한편 벤젠 처리시 세포 사멸 촉진 단백질인 Bax 발현은 증가하였으며 세포 사멸 억제 단백질인 Bcl-2의 발현은 억제 되었으며 세포 사멸 실행 단백질인 casapse-3의 활성형 역시 증가하였다. 결론적으로 벤젠은 폐 상피세포에서 산화성 스트레스 증가를 통해 세포 사멸을 일으키는 것으로 나타났다.

Thymoquinone Prevents Myocardial and Perivascular Fibrosis Induced by Chronic Lipopolysaccharide Exposure in Male Rats - Thymoquinone and Cardiac Fibrosis -

  • Asgharzadeh, Fereshteh;Bargi, Rahimeh;Beheshti, Farimah;Hosseini, Mahmoud;Farzadnia, Mehdi;Khazaei, Majid
    • 대한약침학회지
    • /
    • 제21권4호
    • /
    • pp.284-293
    • /
    • 2018
  • Objectives: Thymoquinone (TQ) is one of the active ingredients of herbal plants such as Nigella sativa L. (NS) which has beneficial effects on the body. The beneficial effects of TQ on the cardiovascular system have reported. This study aimed to investigate the effect of TQ on cardiac fibrosis and permeability, serum and tissue concentration of inflammatory markers and oxidative stress status in chronic lipopolysaccharide exposure in male rats. Methods: Seventy male Wistar rats were randomly divided into five groups as follows: (1) control; (2) LPS (1 mg/kg/day); (3-5) LPS + TQ with three doses of 2, 5 and 10 mg/kg (n=14 in each group). After 3 weeks, serum and cardiac levels of $IL-1{\beta}$, $TNF-{\alpha}$ and nitric oxide (NO) metabolites, and cardiac levels of malondialdehyde (MDA), total thiol groups, catalase (CAT) and superoxide dismutase (SOD) activities, permeability of heart tissue (evaluated by Evans blue dye method) and myocardial fibrosis were determined, histologically. Results: LPS administration induced myocardial and perivascular fibrosis and increased cardiac oxidative stress (MDA), inflammatory markers and heart permeability, while, reduced anti-oxidative enzymes (SOD and CAT) and the total thiol group. Administration of TQ significantly attenuated these observations. Conclusion: TQ improved myocardial and perivascular fibrosis through suppression of chronic inflammation and improving oxidative stress status and can be considered for attenuation of cardiac fibrosis in conditions with chronic low-grade inflammation.

The effect of dietary ions difference on drinking and eating patterns in dairy goats under high ambient temperature

  • Nguyen, Thiet;Chanpongsang, Somchai;Chaiyabutr, Narongsak;Thammacharoen, Sumpun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권4호
    • /
    • pp.599-606
    • /
    • 2019
  • Objective: The present study was carried out to evaluate the effect of high dietary cation and anion difference (DCAD) rations on diurnal variations in eating and meal patterns, water intake and urination patterns in dairy goats fed under high ambient temperature (HTa). Methods: Ten crossbred dairy goats during peri-parturition period were selected and divided into two groups of five animals each. Experimental diets were control DCAD (control, 22.8 mEq/100 g dry matter [DM]) and high DCAD (DCAD, 39.1 mEq/100 g DM). The composition of two diets consisted of 44% corn silage and 56% concentrate. From the 2nd week to 8th week postpartum, goats were fed ad libitum twice daily either with the control or DCAD total mix ration with free access to water. The spontaneous eating and drinking patterns were determined. Results: The environmental conditions in the present experiment indicated that goats were fed under HTa conditions (average peak THI = 85.2) and were in heat stress. In addition to the typical HTa induced tachypnoea in both groups, the respiratory rate in the DCAD group was significantly higher than the control group (p<0.05). Although the goats from both groups showed comparable level of eating, drinking and urination during experiment, the meal pattern and water intake were different. High DCAD apparently increased eating and meal patterns compared with the control. At week 8 postpartum, goats from high DCAD group had significant (p<0.05) bigger meal size and longer meal duration. Moreover, high DCAD appeared to increase night-time water intake (p<0.05). Conclusion: Both meal pattern and night-time drinking effects of DCAD suggested that feeding with high DCAD ration may alleviate the effect of heat stress in dairy goat fed under HTa conditions.

Activation of SAPK and Increase in Bak Levels during Ceramide and Indomethacin-Induced Apoptosis in HT29 Cells

  • Kim, Ju-Ho;Oh, Sae-Ock;Jun, Sung-Sook;Jung, Jin-Sup;Woo, Jae-Suk;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권1호
    • /
    • pp.75-82
    • /
    • 1999
  • It has been reported that activation of sphingomyelin pathway and nonsteroidal anti-inflammatory drugs (NSAIDS) inhibit the promotion of colon carcinoma. Ceramide, a metabolite of sphingomyelin, and indomethacin were shown to induce apoptosis in colon carcinoma cells. However, the mechanisms of ceramide- and indomethacin-induced apoptosis in the colon carcinoma cells are not clearly elucidated. Recent studys showed that indomethacin-induced apoptosis in colon cancer cells through the cyclooxygenase-independent pathways, and that may be mediated by generation of ceramide. In this study, we compared effects of ceramide and indomethacin on important modulators of apoptotic processes in HT29 cells, a human colon cancer cell line. Ceramide and indomethacin induced apoptosis dose- and time- dependently. Ceramide and indomethacin increased stress-activated protein kinase (SAPK) activity, and decreased mitogen-activated protein kinase (MAPK) activity. The expression of Bak was increased by the treatment of ceramide and indomethacin. The expression of other Bcl-2 related proteins (Mcl-1, $Bcl-X_L,$ Bax) which were known to be expressed in colon epithelial cells was not changed during the ceramide- and indomethacin-induced apoptosis. Our results suggest that ceramide and indomethacin share common mechanisms for induction of apoptosis in HT29 cells.

  • PDF